首页 | 本学科首页   官方微博 | 高级检索  
     


Hybrid-fuel bacterial flagellar motors in Escherichia coli
Authors:Yoshiyuki Sowa  Michio Homma  Akihiko Ishijima  Richard M. Berry
Affiliation:aDepartment of Frontier Bioscience and Research Center for Micro-Nano Technology, Hosei University, Tokyo 184-8584, Japan;;bDepartment of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom;;cDivision of Biological Science, Nagoya University, Nagoya 464-8602, Japan; and;dInstitute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
Abstract:The bacterial flagellar motor rotates driven by an electrochemical ion gradient across the cytoplasmic membrane, either H+ or Na+ ions. The motor consists of a rotor ∼50 nm in diameter surrounded by multiple torque-generating ion-conducting stator units. Stator units exchange spontaneously between the motor and a pool in the cytoplasmic membrane on a timescale of minutes, and their stability in the motor is dependent upon the ion gradient. We report a genetically engineered hybrid-fuel flagellar motor in Escherichia coli that contains both H+- and Na+-driven stator components and runs on both types of ion gradient. We controlled the number of each type of stator unit in the motor by protein expression levels and Na+ concentration ([Na+]), using speed changes of single motors driving 1-μm polystyrene beads to determine stator unit numbers. De-energized motors changed from locked to freely rotating on a timescale similar to that of spontaneous stator unit exchange. Hybrid motor speed is simply the sum of speeds attributable to individual stator units of each type. With Na+ and H+ stator components expressed at high and medium levels, respectively, Na+ stator units dominate at high [Na+] and are replaced by H+ units when Na+ is removed. Thus, competition between stator units for spaces in a motor and sensitivity of each type to its own ion gradient combine to allow hybrid motors to adapt to the prevailing ion gradient. We speculate that a similar process may occur in species that naturally express both H+ and Na+ stator components sharing a common rotor.Molecular motors are tiny machines that perform a wide range of functions in living cells. Typically each motor generates mechanical work using a specific chemical or electrochemical energy source. Linear motors such as kinesin on microtubules or myosin on actin filaments and rotary motors such as F1-ATPase, the soluble part of ATP-synthase, run on ATP, whereas the rotary bacterial flagellar motor embedded in the bacterial cell envelope is driven by the flux of ions across the cytoplasmic membrane (14). Coupling ions are known to be either protons (H+) or sodium ions (Na+) (5, 6).The bacterial flagellar motor consists of a rotor ∼50 nm in diameter surrounded by multiple stator units (710). Each unit contains two types of membrane proteins forming ion channels: MotA and MotB in H+ motors in neutrophiles (e.g., Escherichia coli and Salmonella) and PomA and PomB in Na+ motors in alkalophiles and Vibrio species (e.g., Vibrio alginolyticus) (1, 11). Multiple units interact with the rotor to generate torque independently in a working motor (9, 10, 12, 13). The structure and function of H+ and Na+ motors are very similar, to the extent that several functional chimeric motors have been made containing different mixtures of H+- and Na+-motor components (11). One such motor that runs on Na+ in E. coli combines the rotor of the H+-driven E. coli motor with the chimeric stator unit PomA/PotB, containing PomA from V. alginolyticus and a fusion protein between MotB from E. coli and PomB from V. alginolyticus (14).In most flagellated bacteria, motors are driven by ion-specific rotor–stator combinations. However, some species (e.g., Bacillus subtilis and Shewanella oneidensis) combine a single set of rotor genes with multiple sets of stator genes encoding both H+ and Na+ stator proteins, and it has been speculated that these stator components may interact with the rotor simultaneously, allowing a single motor to use both H+ and Na+. An appealing hypothesis that the mixture of stator components is controlled dynamically depending on the environment has arisen from the observation that the localization of both stator components depends upon Na+ (15). However, despite some experimental effort there is as yet no direct evidence of both H+ and Na+ stator units interacting with the same rotor (16).The rotation of single flagellar motors can be monitored in real time by light microscopy of polystyrene beads (diameter ∼1 μm) attached to truncated flagellar filaments (17). Under these conditions, the E. coli motor torque and speed are proportional to the number of stator units in both H+-driven MotA/MotB and Na+-driven PomA/PotB (1719) motors. The maximum number of units that can work simultaneously in a single motor has been shown to be at least 11 by “resurrection” experiments, in which newly produced functional units lead to restoration of motor rotation in discrete speed increments in an E. coli strain lacking functional stator proteins (19). Stator units are not fixed permanently in a motor: Each dissociates from the motor with a typical rate of ∼2 min−1, exchanging between the motor and a pool of diffusing units in the cytoplasmic membrane (20). Removal of the relevant ion gradient inactivates both H+ and Na+ stator units, most likely leading to dissociation from the motor into the membrane pool (2, 21, 22).Here we demonstrate a hybrid-fuel motor containing both H+-driven MotA/MotB and Na+-driven PomA/PotB stator components, sharing a common rotor in E. coli. We control the expression level of each stator type by induced expression from plasmids, and the affinity of Na+-driven stator units for the motor by external [Na+]. Units of each type compete for spaces around the rotor, and the motor torque is simply the sum of the independent contributions, with no evidence of direct interaction between units. Thus, we demonstrate the possibility of modularity in the E. coli flagellar motor, with ion selectivity determined by the choice of stator modules interacting with a common rotor. Our artificial hybrid motor demonstrates that species with multiple types of stator gene and a single set of rotor genes could contain natural hybrid motors that work on a similar principle (15, 16, 23).
Keywords:molecular motor   nano-machine   Na+-driven flagella   hybrid-fuel motor   stator dynamics
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号