首页 | 本学科首页   官方微博 | 高级检索  
     


Ca2+-activated K+ efflux limits complement-mediated lysis of human erythrocytes.
Authors:J A Halperin   C Brugnara     A Nicholson-Weller
Affiliation:Department of Cellular and Molecular Physiology, Harvard Medical School, Boston, Massachusetts 02115.
Abstract:The lytic effect of complement on human erythrocytes has been reported by others to increase when Na+ is substituted for K+ in the external medium. In this paper we have investigated the hypothesis that net loss of K+ through a K+ transport pathway protects erythrocytes from complement-induced colloidosmotic swelling and lysis. Antibody-sensitized human erythrocytes containing different intracellular cation concentrations (nystatin treatment) were exposed to low concentrations of guinea pig serum in media of different cation composition; complement lysis was assessed by the release of hemoglobin and the volume of the surviving cells estimated by their density distribution profiles. Complement-dependent swelling and lysis of erythrocytes (a) were limited by the presence of an outwardly directed K+ electrochemical gradient and (b) were enhanced by carbocyanine, a specific inhibitor of the Ca2+-activated K+ transport pathway, and by absence of Ca2+ in the external medium. We propose that during complement activation a rising cytosolic calcium triggers the Ca2+-activated K+ permeability pathway, the Gardos effect, produces a net K+, Cl- and water loss, and thus limits the colloidosmotic swelling and lysis of erythrocytes.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号