首页 | 本学科首页   官方微博 | 高级检索  
     

基于水平集方法的图像分割
引用本文:付宜利,汪逸群,高文朋,王树国. 基于水平集方法的图像分割[J]. 医学影像学杂志, 2007, 17(8): 864-867
作者姓名:付宜利  汪逸群  高文朋  王树国
作者单位:哈尔滨工业大学Bio-X中心,黑龙江,哈尔滨,150001
摘    要:目的:提取T1加权MR脑图像中的侧脑室。方法:首先用高斯滤波对原始图像进行平滑,然后利用改进的FastMarching方法对脑图像进行分割。根据T1加权MR脑图像的成像特点并结合区域信息重新定义了Fast Marching方法的速度函数,该速度函数具有良好的抗泄漏能力。结果:对一系列T1加权MR脑图像进行了分割实验,成功提取出了侧脑室。结论:改善了传统Fast Marching方法在弱边界处易泄漏的缺陷,具有更好的分割效果。

关 键 词:阈值  水平集  快速行进法  图像分割  磁共振成像
文章编号:1006-9011(2007)08-0864-04
修稿时间:2007-03-11

Image segmentation based on level set method
FU Yi-li,WANG Yi-qun,GAO Wen-peng,WANG Shu-guo. Image segmentation based on level set method[J]. Journal of Medical Imaging, 2007, 17(8): 864-867
Authors:FU Yi-li  WANG Yi-qun  GAO Wen-peng  WANG Shu-guo
Affiliation:Bio-X Center, Harbin Institute of Technology, Heilongjiang Harbin 150001, P. R. China
Abstract:Objective:To segment the cerebral lateral ventricle from T1-weighted MR images.Methods:Firstly, the MR images are smoothed by Gaussian filter, and then segmented with improved Fast Marching method. With the help of region information and the characteristics of T1-weighted MR images, a new speed function for Fast marching method was proposed. The new speed function has a higher evolutive velocity in the objective area while it has a slower evolutive velocity near the objective region edges.Results:In the experiments, the lateral ventricles from a series of T1-weighted MR images were partitioned successful.Conclusion:The results proved that the proposed algorithm gets better outcomes than the common Fast Marching method especially when the MR images have weak edges.
Keywords:Threshold value  Level set  Fast marching  Image segmentation  Magnetic resonance imaging
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号