首页 | 本学科首页   官方微博 | 高级检索  
检索        


Fast network oscillations in vitro exhibit a slow decay of temporal auto-correlations
Authors:Poil Simon-Shlomo  Jansen Rick  van Aerde Karlijn  Timmerman Jaap  Brussaard Arjen B  Mansvelder Huibert D  Linkenkaer-Hansen Klaus
Institution:Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
Abstract:Ongoing neuronal oscillations in vivo exhibit non-random amplitude fluctuations as reflected in a slow decay of temporal auto-correlations that persist for tens of seconds. Interestingly, the decay of auto-correlations is altered in several brain-related disorders, including epilepsy, depression and Alzheimer's disease, suggesting that the temporal structure of oscillations depends on intact neuronal networks in the brain. Whether structured amplitude modulation occurs only in the intact brain or whether isolated neuronal networks can also give rise to amplitude modulation with a slow decay is not known. Here, we examined the temporal structure of cholinergic fast network oscillations in acute hippocampal slices. For the first time, we show that a slow decay of temporal correlations can emerge from synchronized activity in isolated hippocampal networks from mice, and is maximal at intermediate concentrations of the cholinergic agonist carbachol. Using zolpidem, a positive allosteric modulator of GABA(A) receptor function, we found that increased inhibition leads to longer oscillation bursts and more persistent temporal correlations. In addition, we asked if these findings were unique for mouse hippocampus, and we therefore analysed cholinergic fast network oscillations in rat prefrontal cortex slices. We observed significant temporal correlations, which were similar in strength to those found in mouse hippocampus and human cortex. Taken together, our data indicate that fast network oscillations with temporal correlations can be induced in isolated networks in vitro in different species and brain areas, and therefore may serve as model systems to investigate how altered temporal correlations in disease may be rescued with pharmacology.
Keywords:acetylcholine  memory  mouse  ongoing oscillations  temporal auto‐correlations
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号