首页 | 本学科首页   官方微博 | 高级检索  
检索        


Neural network reconstruction of single-photon emission computed tomography images
Authors:John P Kerr  Eric B Bartlett PhD
Institution:1. Adaptive Computing Laboratory, Biomedical Engineering Program, Iowa State University, 107 Nuclear Engineering Lab, 50011-2241, Ames, IA
Abstract:An artificial neural network (ANN) trained on high-quality medical tomograms or phantom images may be able to learn the planar data-to-tomographic image relationship with very high precision. As a result, a properly trained ANN can produce comparably accurate image reconstruction without the high computational cost inherent in some traditional reconstruction techniques. We have previously shown that a standard backpropagation neural network can be trained to reconstruct sections of single photon emission computed tomography (SPECT) images based on the planar image projections as inputs. In this study, we present a method of deriving activation functions for a backpropagation ANN that make it readily trainable for full SPECT image reconstruction. The activation functions used for this work are based on the estimated probability density functions (PDFs) of the ANN training set data. The statistically tailored ANN and the standard sigmoidal backpropagation ANN methods are compared both in terms of their trainability and generalization ability. The results presented show that a statistically tailored ANN can reconstruct novel tomographic images of a quality comparable with that of the images used to train the network. Ultimately, an adequately trained ANN should be able to properly compensate for physical photon transport effects, background noise, and artifacts while reconstructing the tomographic image.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号