首页 | 本学科首页   官方微博 | 高级检索  
     


The use of FT-IR imaging as an analytical tool for the characterization of drug delivery systems.
Authors:Carrie A Coutts-Lendon  Norman A Wright  Ellen V Mieso  Jack L Koenig
Affiliation:Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106-7202, USA.
Abstract:FT-IR imaging spectroscopy is well suited for studying dynamic processes occurring in multi-component systems. Each component is resolved spatially based on the spectral response at each detector element. Additionally, the sequential collection of images tracks the movement of each component over time. In this study, the delivery characteristics of the drug, testosterone, suspended in a poly(ethylene oxide) (PEO) matrix was observed using this technique. Drug release occurred as the hydrophilic, erodible polymer underwent controlled dissolution, exposing the drug to the aqueous environment. The subsequent conversion of the drug into the therapeutic aqueous form completed the delivery process. Qualitative evaluation of the false color composite infrared images led to the elucidation of two distinct delivery mechanisms, dependent on the degree of drug loading. The spatially embedded spectral features led to the quantification of the drug release rates as well as the rates of polymer dissolution. The rates for both polymer dissolution and drug release were evaluated using well-established models. Additionally, the homogeneity of the drug dispersion for different loadings was characterized. The roles of chemical interactions across the solvent interface of species were also investigated. Changes in each component from the bulk to the solvated region were investigated, revealing changes in concentration and polymer orientation as well as inter-species interactions.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号