首页 | 本学科首页   官方微博 | 高级检索  
     


Oxidized low-density lipoprotein increases superoxide production by endothelial nitric oxide synthase by inhibiting PKCalpha
Authors:Fleming Ingrid  Mohamed Annisuddin  Galle Jan  Turchanowa Ljudmila  Brandes Ralf P  Fisslthaler Beate  Busse Rudi
Affiliation:Institut für Kardiovaskul?re Physiologie, Johann Wolfgang Goethe-Universit?t, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany. fleming@em.uni-frankfurt.de
Abstract:OBJECTIVE: Oxidized low-density lipoprotein (ox-LDL) increases superoxide anion (O(2)(-)) production by the endothelial nitric oxide (NO) synthase (eNOS). We assessed whether the uncoupling of eNOS was associated with alterations in eNOS phosphorylation and/or the assembly of the eNOS signaling complex. METHODS AND RESULTS: In unstimulated human endothelial cells, eNOS Thr(495) was constitutively phosphorylated. ox-LDL, but not native LDL, enhanced the production of O(2)(-) by endothelial cells, an effect that was partially sensitive to NOS inhibition. ox-LDL, but not native LDL, induced a time- and concentration-dependent decrease in the phosphorylation of eNOS on Thr(495). Protein kinase C (PKC) has been reported to phosphorylate this residue, and the increase in the phosphorylation of Thr(495) induced by phorbol 12-myristate 13-acetate was attenuated in cells pretreated with ox-LDL. Moreover, the phosphorylation and activity of PKCalpha was attenuated by ox-LDL and paralleled the changes in eNOS phosphorylation. ox-LDL also induced the dissociation of eNOS from the plasma and Golgi membranes. In COS-7 cells, a T495A eNOS mutant generated significantly more O(2)(-) than a T495D mutant did, indicating that the dephosphorylation of Thr(495) alone can increase O(2)(-) production by eNOS. However, although the dephosphorylation of Thr(495) in histamine-stimulated endothelial cells enhanced the binding of calmodulin to eNOS, calmodulin no longer bound to eNOS from ox-LDL-treated endothelial cells. CONCLUSIONS: These results indicate that a decrease in the activity of PKCalpha in ox-LDL-treated endothelial cells is associated with the dephosphorylation of eNOS, dissociation of the eNOS signaling complex, and the enhanced production of eNOS-derived O(2)(-).
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号