首页 | 本学科首页   官方微博 | 高级检索  
     

基于微阵列表达数据的可调FPR差异表达基因筛选
引用本文:张彦琦,袁源,赵增炜,易东. 基于微阵列表达数据的可调FPR差异表达基因筛选[J]. 重庆医学, 2007, 36(4): 330-332
作者姓名:张彦琦  袁源  赵增炜  易东
作者单位:第三军医大学军事预防医学院卫生统计学教研室,重庆,400038;成都蓉生药业有限责任公司,610000
摘    要:目的 基于微阵列表达数据,探索筛选差异表达基因的有效方法.方法 在传统t检验和方差分析的基础上,通过对重复实验数据的随机组合,构建秩统计量和期望秩统计量,通过调节二者的差值作为阈值,计算对应假阳性率(FPR),筛选差异表达基因.结果 将本方法应用于模拟数据集和真实微阵列表达数据上,均取得较好的效果.结论 本方法适用于微阵列表达数据,进行差异表达基因的筛选,并且比传统的方法更具灵活性.

关 键 词:微阵列  差异表达基因  假阳性率
文章编号:1671-8348(2007)04-330-03
修稿时间:2006-09-10

Screen of significant genes with adjustable FPR based on microarray data
ZHANG Yan-qi ,YUAN Yuan ,ZHAO Zeng-wei ,et al.. Screen of significant genes with adjustable FPR based on microarray data[J]. Chongqing Medical Journal, 2007, 36(4): 330-332
Authors:ZHANG Yan-qi   YUAN Yuan   ZHAO Zeng-wei   et al.
Affiliation:1. Department of Health Statistics, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China ; 2. Rongsheng Pharmaceulicals Company Limited, Chengdu 610000, China
Abstract:Objective To search an effective method on screening significant genes based on microarray data.Methods Based on conventional t test,ANOVA and random combined microarray data,the rank statistic and expected rank statistic were constructed.Though adjusting the difference of the two statistics and taking it as a threshold,the corresponding FPR(false positive rate) was computed and the significant genes were screened.Results With the method used on simulative data and real microarray data,idealized operation result was made.Conclusion The method is suitable to analyze microarray data and screen significant genes.Besides,the method is more flexible than conventional methods.
Keywords:microarray  significant gene  false positive rate
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号