首页 | 本学科首页   官方微博 | 高级检索  
     

熵正则化磁共振成像理论及迭代算法
引用本文:汪元美,赵晓东. 熵正则化磁共振成像理论及迭代算法[J]. 中国生物医学工程学报, 2002, 21(3): 193-198
作者姓名:汪元美  赵晓东
作者单位:浙江大学生物医学工程国家教育部重点实验室,杭州,310027
基金项目:国家自然科学基金 (60 0 72 0 2 4)资助项目,浙江省自然科学基金 (6990 11)资助项目
摘    要:实际的磁共振成像系统 ,通常仅能收集有限的频谱数据 ,傅立叶变换法重建的图像存在Gibbs伪影 ,且分辨率有限。我们提出的熵正则化磁共振成像方法是考虑与原始频谱数据一致性的条件下 ,熵极大化而获得的结果。重建的图像具有无限的分辨率 ,降低Gibbs伪影及信号中的噪声。本算法的稳定性优于模型最大熵法[12 ] 。对截断及噪声的频谱数据的成像结果证实了我们方法的有效性

关 键 词:熵优化  正则化  磁共振成像  Gibbs伪影
文章编号:0258-8021(2002)-03-193-06
修稿时间:1999-01-04

ON ITERATIVE METHOD FOR ENTROPY REGULARIZED RECONSTRUCTION IN MRI
WANG Yuan mei,ZHAO Xiao dong. ON ITERATIVE METHOD FOR ENTROPY REGULARIZED RECONSTRUCTION IN MRI[J]. Chinese Journal of Biomedical Engineering, 2002, 21(3): 193-198
Authors:WANG Yuan mei  ZHAO Xiao dong
Abstract:In magnetic resonance imaging, only a limited amount of sampled data could be collected. The limitation of available experimental data led to the infamous problem of diffraction which manifested itself by causing ringing in the image. This ringing was due to interference phenomena in optics and was known as the Gibbs phenomenon in engineering. Here, an iterative entropy regularization algorithm for MRI was developed, which produced a super redsolution and optimal signal to noise solution to the problem of reconstructing a source from partial Fourier transform data. This method was capable, in principle, of unlimited resolution and was robust with respect to Gaussian white noise perturbation. Comparisons of the IMER method with the conventional Fourier transform method was carried out with the real magnetic resonance data to illustrate the proposed method.
Keywords:Iterative method  Entropy optimization  Magnetic resonance imaging
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号