首页 | 本学科首页   官方微博 | 高级检索  
检索        


Body weight and abdominal fat gene expression profile in response to a novel hydroxycitric acid-based dietary supplement
Authors:Roy Sashwati  Rink Cameron  Khanna Savita  Phillips Christina  Bagchi Debasis  Bagchi Manashi  Sen Chandan K
Institution:Laboratory of Molecular Medicine, Department of Surgery, The Ohio State University Medical Center, Columbus, OH 43210, USA.
Abstract:Obesity is a global public health problem, with about 315 million people worldwide estimated to fall into the WHO-defined obesity categories. Traditional herbal medicines may have some potential in managing obesity. Botanical dietary supplements often contain complex mixtures of phytochemicals that have additive or synergistic interactions. The dried fruit rind of Garcinia cambogia, also known as Malabar tamarind, is a unique source of (-)-hydroxycitric acid (HCA), which exhibits a distinct sour taste and has been safely used for centuries in Southeastern Asia to make meals more filling. Recently it has been demonstrated that HCA-SX or Super Citrimax, a novel derivative of HCA, is safe when taken orally and that HCA-SX is bioavailable in the human plasma as studied by GC-MS. Although HCA-SX has been observed to be conditionally effective in weight management in experimental animals as well as in humans, its mechanism of action remains to be understood. We sought to determine the effects of low-dose oral HCA-SX on the body weight and abdominal fat gene expression profile of Sprague-Dawley rats. We observed that at doses relevant for human consumption dietary HCA-SX significantly contained body weight growth. This response was associated with lowered abdominal fat leptin expression while plasma leptin levels remained unaffected. Repeated high-density microarray analysis of 9960 genes and ESTs present in the fat tissue identified a small set (approximately 1% of all genes screened) of specific genes sensitive to dietary HCA-SX. Other genes, including vital genes transcribing for mitochondrial/nuclear proteins and which are necessary for fundamental support of the tissue, were not affected by HCA-SX. Under the current experimental conditions, HCA-SX proved to be effective in restricting body weight gain in adult rats. Functional characterization of HCA-SX-sensitive genes revealed that upregulation of genes encoding serotonin receptors represent a distinct effect of dietary HCA-SX supplementation.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号