首页 | 本学科首页   官方微博 | 高级检索  
     


Antitumor activity and downregulation of pro-angiogenic molecules in human prostate cancer cells by a novel thiazolidione compound
Authors:Teraishi Fuminori  Wu Shuhong  Inoue Satoshi  Zhang Lidong  Davis John J  Guo Wei  Dong Fengqin  Fang Bingliang
Affiliation:Department of Thoracic and Cardiovascular Surgery, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA.
Abstract:BACKGROUND: Current treatments for prostate cancer are effective in many patients with locally advanced disease, but many of these patients eventually have recurrence. It is therefore important to develop alternative therapeutic agents with improved efficacy and tolerability. We recently identified a synthetic thiazolidin compound, 5-(2,4-dihydroxybenzylidene)-2-(phenylimino)-1,3-thiazolidione (DBPT), that induces apoptosis in human colon cancer cells, independent of p53 and P-glycoprotein status. Here, we investigated the antitumor properties and mechanisms of action of this compound in human prostate cancer cell lines. METHODS: The effect of DBPT on cell-cycle progression and apoptosis in LNCaP and DU145 cells was examined by flow cytometry and Western blotting. The effect of DBPT on pro-angiogenic molecules was analyzed by Western blotting and by an enzyme-linked immunosorbent assay. RESULTS: DBPT inhibited the growth of LNCaP and DU145 cells with 50% inhibitory concentrations ranging from 1.6 to 5.9 microM. Treating LNCaP and DU145 cells with DBPT led to a time-dependent cell-cycle arrest in the G(2)/M phase and increased levels of G(2)/M checkpoint proteins, such as cyclin B1, cdc25C, phosphorylated histone H(3), and MPM-2. DBPT induced the phosphorylation of Bcl-xL and Bim, and induced apoptosis, as evidenced by cleavage of caspase and poly (ADP-ribose) polymerase. DBPT also effectively induced apoptosis in Bcl-2-overexpressing DU145 cells. Furthermore, DBPT decreased hypoxia-inducible factor 1 alpha and vascular endothelial growth factor expression in LNCaP cells under both normoxia and hypoxia. CONCLUSIONS: DBPT can suppress proliferation, induce apoptosis, and down regulate pro-angiogenic molecules in prostate cancer cells, and might be useful in treating prostate cancer.
Keywords:novel compound  prostate cancer  apoptosis  G2/M‐phase arrest  VEGF
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号