首页 | 本学科首页   官方微博 | 高级检索  
检索        


Endoproteolytic processing of a farnesylated peptide in vitro.
Authors:M N Ashby  D S King  and J Rine
Institution:Department of Molecular and Cell Biology, University of California, Berkeley 94720.
Abstract:Numerous eukaryotic proteins containing a carboxyl-terminal CAAX motif (C, cysteine; A, aliphatic amino acid; X, any amino acid) require a three-step posttranslational processing for localization and function. The a mating factor of Saccharomyces cerevisiae is one such protein, requiring cysteine farnesylation, proteolysis of the terminal three amino acids, and carboxyl methylation for biological activity. We have used farnesylated a-factor peptides to examine the proteolytic step in the maturation of CAAX-containing proteins. Three distinct carboxyl-terminal protease activities were found in yeast cell extracts that could remove the terminal three residues of a-factor. Two of the proteolytic activities were in cytosolic fractions. One of these activities was a PEP4-dependent carboxypeptidase that was sensitive to phenylmethylsulfonyl fluoride. The other cytosolic activity was PEP4-independent, sensitive to 1,10-phenanthroline, and effectively inhibited by an unfarnesylated a-factor peptide. In contrast, a protease activity in membrane fractions was unaffected by phenylmethylsulfonyl fluoride, 1,10-phenanthroline, or unfarnesylated a-factor peptide. Incubation of membrane preparations from either yeast or rat liver with a radiolabeled farnesylated a-factor peptide released the terminal three amino acids intact as a tripeptide, indicating that this reaction occurred by an endoproteolytic mechanism and that the enzyme most likely possesses a broad substrate specificity. The yeast endoprotease was not significantly affected by a panel of protease inhibitors, suggesting that the enzyme is novel. Zinc ion was shown to inhibit the endoprotease (Ki less than 100 microM). The specific activities of the a-factor carboxyl-terminal membrane endoprotease and methyltransferase clearly indicated that the proteolytic reaction was not rate-limiting in these processing reactions in vitro.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号