首页 | 本学科首页   官方微博 | 高级检索  
     

独立分量分析在脑电信号处理中的应用及研究进展
引用本文:李婷,邱天爽,牛杰. 独立分量分析在脑电信号处理中的应用及研究进展[J]. 北京生物医学工程, 2005, 24(3): 226-229
作者姓名:李婷  邱天爽  牛杰
作者单位:大连理工大学电子与信息工程学院,辽宁,大连,116024;大连理工大学电子与信息工程学院,辽宁,大连,116024;大连理工大学电子与信息工程学院,辽宁,大连,116024
基金项目:国家自然科学基金,辽宁省科技计划
摘    要:独立分量分析(independent component analysis,ICA)方法是从一组观测信号中提取统计独立分量的方法.因为用这种方法分解出的各信号分量之间是相互独立的,而测得的脑电信号往往包含若干相对独立的成分,所以用它来分解脑电信号,所得的结果更具有生理意义,有利于去除干扰和伪差.本文简要地回顾了ICA的发展历史和主要算法,综述了它在脑电信号处理中的应用及研究进展,并指出了需要进一步研究解决的问题.

关 键 词:独立分量分析  盲源分离  自发脑电  诱发脑电
文章编号:1002-3208(2005)03-0226-04
修稿时间:2004-01-29

The Development of Independent Component Analysis and its Application in Brain Signals
LI Ting,QIU Tianshuang,NIU Jie. The Development of Independent Component Analysis and its Application in Brain Signals[J]. Beijing Biomedical Engineering, 2005, 24(3): 226-229
Authors:LI Ting  QIU Tianshuang  NIU Jie
Abstract:Independent component analysis (ICA) is a technique which extracts statistically independent components from a set of measured signals. Since all components decomposed by ICA are mutually independent, especially the brain signals measured are usually the mixture of several relatively independent sources, the ICA decomposition of brain signals can lead to results more plausible physiologically. ICA also makes it easy to wipe off noises. A short review on the history and main algorithms of ICA is addressed, together with its development and application in brain signal processing. Problems need to be studied further are also discussed.
Keywords:independent component analysis blind source separation EEG evoked potential
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号