首页 | 本学科首页   官方微博 | 高级检索  
检索        


Heterochronous maturation of regional brain astroglia: neuronal modulation of striatal glial cells differentiation ex vivo
Authors:Mnica I Napp  Jorge A Colombo
Institution:Programa Unidad de Neurobiología Aplicada (PRUNA)(CEMIC-CONICET), Av Galván 4102, 1431, Buenos Aires, Argentina.
Abstract:Subcultured astroglial cells from striatum, cerebral cortex and ventral mesencephalon obtained from primary cultures of fetal (E14, E17 and E21) or postnatal (days 5-6) rats showed different regional, age-dependent morphological response (stellation) to cyclic AMP. While most of the cerebral cortex and ventral mesencephalic astroglial cell population was responsive at all ages tested, striatal cells at E14 and E17 were not. At age E21 striatal astroglia showed a significant shift toward a mature-like type of response to cyclic AMP. Postnatal striatal astroglia responded to cyclic AMP as the cortical and ventral mesencephalic astroglia did, with generalized stellation. Prenatal striatal astroglia was characterized immunocytochemically as A2B5+, fibronectin+, vimentin+, S-100+ and GFAP-. Failure of early prenatal (E14, E17) striatal astroglia to differentiate in response to cyclic AMP, was overcome by previous (5-7 days) co-culture with primary cell dissociates from postnatal-, but not from prenatal donors, from all brain regions tested including a non-target region for striatal cells, such as septum. This effect was duplicated when striatal astroglia was co-cultured with cell populations enriched in neurons through Percoll gradients. Only cell-to-cell contact co-cultures were able to induce a change in the studied response. Dead neuron-enriched populations obtained following various types of physical treatments were also able to change significantly striatal cell response toward cyclic AMP. Enriched astroglial populations from postnatal donors did not change striatal astroglial response toward cyclic AMP, except for ventral mesencephalic astroglia which induced a comparatively reduced but significant increase in striatal cell responsiveness. It is concluded that astroglial maturation and potential for phenotype expression during brain development proceeds with regional heterochrony. Also, that maturation of prenatal striatal astroglia responsiveness toward cyclic AMP is inducible by non-diffusible factors, probably of neuronal origin, expressed in live or dead primary cultures from various, homotopic and heterotopic, postnatal brain regions. It is further suggested that striatal afferents and/or mature local striatal neurons express membrane associated molecules that regulate responsiveness for phenotype expression of striatal glial cells, thus reinforcing the concept of a highly interactive, continuous neuron-glial developmental process that takes place during brain organization.
Keywords:Abbreviations: cAMP  cyclic AMP  N6  2′-O-dibutyryladenosine 3′:5′-cyclic monophosphate  CC  cerebral cortex  DiI  1  1′-dioctadecyl-3  3  3′  3′  -tetramethylindocarbocyanine perchlorate  E14  embryonic day 14  E17  embryonic day 17  E21  embryonic day 21  GFAP  glial fibrillary acidic protein  PN  postnatal day  S/T  stellated/total cells  S  striatum  SEPT  septum  VM  ventral mesencephalon
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号