Oxygen-dependent mechanisms in cerebral autoregulation |
| |
Authors: | Hermes A. Kontos M.D. Ph.D. Enoch P. Wei |
| |
Affiliation: | (1) Department of Medicine, Medical College of Virginia, MCV, 23298 Richmond, Virginia |
| |
Abstract: | Autoregulatory adjustments in the caliber of cerebral arterioles were studied in anesthetized cats equipped with cranial windows for the direct observation of the pial microcirculation. Increased venous pressure caused slight, but consistent, arteriolar dilation, at normal and at reduced arterial blood pressure and irrespective of whether or not intracranial pressure was kept constant or allowed to increase. Arterial hypotension caused arteriolar dilation which was inhibited partially by perfusion of the space under the cranial window with artificial CSF equilibrated with high concentrations of oxygen. This vasodilation was inhibited to a greater extent by perfusion of the space under the cranial window with fluorocarbon FC-80, equilibrated with high concentrations of oxygen. CSF or fluorocarbon equilibrated with nitrogen did not influence the vasodilation in response to arterial hypotension. The response to increased venous pressure was converted to vasoconstriction when fluorocarbon equilibrated with high concentrations of oxygen was flowing under the cranial window. The vasodilation in response to arterial hypotension was inhibited by topical application of adenosine deaminase. The results show that both metabolic and myogenic mechanisms play a role in cerebral arteriolar autoregulation. Under normal conditions, the metabolic mechanisms predominate. The presence of the myogenic mechanisms may be unmasked by preventing the operation of the metabolic mechanisms. The major metabolic mechanism seems to be dependent on changes in PO2 within the brain with secondary release of adenosine. |
| |
Keywords: | Adenosine Vasodilation Arterial hypotension Vascular smooth muscle |
本文献已被 SpringerLink 等数据库收录! |
|