首页 | 本学科首页   官方微博 | 高级检索  
     


Insulin-like growth factor I-mediated skeletal muscle hypertrophy is characterized by increased mTOR-p70S6K signaling without increased Akt phosphorylation.
Authors:Yao-Hua Song  Michael Godard  Yangxin Li  Scott R Richmond  Nadia Rosenthal  Patrick Delafontaine
Affiliation:Department of Medicine, Section of Cardiology, Tulane University School of Medicine, New Orleans, LA 70112-2699, USA.
Abstract:BACKGROUND: Insulin-like growth factor I (IGF-I) is an anabolic hormone that is known to induce skeletal muscle hypertrophy. However, the signaling pathways mediating IGF-I's hypertrophic effect in vivo are unknown. METHOD: The phosphorylation of 46 proteins was investigated by Kinetworks proteomic analysis in the gastrocnemius muscle of transgenic mice overexpressing IGF-I myosin light chain/muscle specific IGF-I (MLC/mlgf-I) and wild-type littermates. RESULTS: In the hypertrophic muscle of MLC/mlgf-I mice, we observed increased phosphorylation of phosphoinositide-dependent protein kinase 1 (PDK1; 53% increase), the mammalian target of rapamycin (mTOR; 112% increase), and p70 S6 kinase (p70S6K) (254% increase) but no significant change in Akt phosphorylation (4% decrease). Furthermore, we found reduced phosphorylation of MAP kinase kinase 1 and 2 (MEK1/2) (60% decrease) and of mitogen-activated protein kinase kinases 3 and 6 (MKK3/6) (50% decrease) in muscle from transgenic mice, suggesting that the hypertrophic and mitogenic effects of IGF-I are mediated via distinct signaling pathways in skeletal muscle and that inhibition of the mitogen-activated protein (MAP) kinase pathway may be required for the IGF-I-induced hypertrophic effect. Single-fiber analysis revealed a trend toward a higher percentage of the fast twitch fibers (IIb and IIx) in the transgenic mice. CONCLUSION: Persistent overexpression of IGF-I in mice skeletal muscle results in hypertrophy, which is likely mediated via the mTOR/p70S6K pathway, potentially via an Akt-independent signaling pathway.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号