首页 | 本学科首页   官方微博 | 高级检索  
检索        


Retinoic acids and thyroid hormone act synergistically with dexamethasone to increase growth hormone-releasing hormone receptor messenger ribonucleic acid expression
Authors:Nogami H  Matsubara M  Harigaya T  Katayama M  Kawamura K
Institution:Department of Anatomy, Keio University School of Medicine, Tokyo, Japan. hnogami@md.tsukuba.ac.jp
Abstract:The effects of all-trans-retinoic acid (RA), 9-cis-retinoic acid (9cRA), and thyroid hormone (T3) on GH-releasing hormone receptor (GHRH-R) messenger RNA (mRNA) expression were studied using ribonuclease protection assay in the fetal rat pituitary gland and in MtT/S cells, a clonal GH cell line derived from an estrogen-induced somatotropic tumor in the rat. Although RA (1 microM), 9cRA (1 microM), or T3 (1 nM) alone showed little effect on GHRH-R mRNA expression in the MtT/S cells, each of these substances was found to act synergistically with dexamethasone (DEX; 500 nM) to increase GHRH-R mRNA expression. The effects of RAs and T3 were dose dependent, with maximum effects observed at 1 microM and 1 nM, respectively. The maximum effect of RAs or T3 was not further augmented by the addition of T3 or RAs, respectively. No apparent differences were observed in this study between the actions of RA and 9cRA. The Northern analyses showed that MtT/S cells express retinoic acid receptor alpha2 mRNA and thyroid hormone receptor beta2 mRNA, and DEX did not affect the levels of these mRNAs. This suggests that the role of DEX in enabling RAs or T3 to up-regulate GHRH-R mRNA levels is not an induction of the expression of each specific receptor for RAs and T3. The similar enhancement of DEX induction of GHRH-R mRNA by RAs or T3 was also observed in the fetal rat pituitary gland in culture, suggesting that RA and/or T3 is involved in the mechanisms responsible for the developmentally regulated expression of GHRH-R mRNA.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号