首页 | 本学科首页   官方微博 | 高级检索  
     


Concurrent fMRI and optical measures for the investigation of the hemodynamic response function.
Authors:Aneurin J Kennerley  Jason Berwick  John Martindale  David Johnston  Nikos Papadakis  John E Mayhew
Affiliation:Centre for Signal Processing in Neuroimaging and Systems Neuroscience, Department of Psychology, University of Sheffield, Sheffield, UK.
Abstract:Functional magnetic resonance imaging (fMRI) signal variations are based on a combination of changes in cerebral blood flow (CBF) and volume (CBV), and blood oxygenation. We investigated the relationship between these hemodynamic parameters in the rodent barrel cortex by performing fMRI concurrently with laser Doppler flowmetry (LDF) or optical imaging spectroscopy (OIS), following whisker stimulation and hypercapnic challenge. A difference between the positions of the maximum blood oxygenation level-dependent (BOLD) and CBV changes was observed in coronal fMRI maps, with the BOLD region being more superficial. A 6.5% baseline blood volume fraction in this superficial region dropped to 4% in deeper cortical layers (corresponding to total hemoglobin baseline volumes Hbt0 = 110 microM and 67 microM, respectively), as inferred from maps of deltaR2*. Baseline volume profiles were used to parameterize the Monte Carlo simulations (MCS) to interpret the 2D OIS. From this it was found that the optical blood volume measurements (i.e., changes in total hemoglobin) equated with CBV-MRI measurements when the MRI data were taken from superficial cortical layers. Optical measures of activation showed a good spatial overlap with fMRI measurements taken in the same plane (covering the right hemisphere surface). Changes in CBV and CBF followed the scaling relationship CBV = CBF(alpha), with mean alpha = 0.38 +/- 0.06.
Keywords:fMRI  optical imaging  laser Doppler  hemodynamics  concurrent
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号