首页 | 本学科首页   官方微博 | 高级检索  
     


Cyclic AMP-dependent regulation of K+ transport in the rat distal colon.
Authors:M. Diener   F. Hug   D. Strabel     E. Scharrer
Affiliation:Institut für Veterinär-Physiologie, Universität Zürich, Switzerland.
Abstract:1. The effect of agonists of the cyclic AMP pathway and of 293B, a chromanole-derived K+ channel blocker, on K+ transport in the rat distal colon was studied by measuring unidirectional fluxes, uptake, and efflux of Rb+ in mucosa-submucosa preparations and by patch-clamp of crypt epithelia from isolated crypts. 2. 293B concentration-dependently inhibited basal and forskolin-stimulated short-circuit current. In isolated crypts 293B blocked a basal K+ conductance but had no effect on cyclic AMP-evoked depolarization induced by the opening of apical Cl- channels. When the effect of cyclic AMP on Cl- conductance was prevented by substituting Cl- with gluconate, an inhibition of total cellular K+ conductance by forskolin and a membrane-permeable cyclic AMP analogue was unmasked. 3. Unidirectional ion flux measurements revealed that 293B suppressed the increase in JRbsm induced by forskolin. This, together with the inhibition of cyclic AMP-induced anion secretion indicates that the drug blocks K+ channels, presumably both in the apical and the basolateral membrane. Forskolin caused not only inhibition of K+ absorption, but also stimulation of K+ secretion. The inhibition was diminished, but not blocked, in the presence of inhibitors of the apical H(+)-K(+)-ATPase, vanadate and ouabain. Forskolin stimulated serosal, bumetanide-sensitive Rb+ uptake, whereas mucosal, ouabain/vanadate-sensitive uptake remained unaffected. 4. Efflux experiments revealed that forskolin caused a redistribution of cellular K+ efflux reducing the ratio of basolateral versus apical Rb+ efflux. 5. These results suggest that intracellular cyclic AMP exerts its effects on K+ transport by several mechanisms: an increase in the driving force for K+ efflux due to the depolarization induced by opening of Cl- channels, a stimulation of the basolateral uptake of K+ via the Na(+)-K(+)-Cl(-)-cotransporter, and a decrease of the ratio of basolateral versus apical K+ conductance leading to an enhanced efflux of K+ into the lumen and a reduced K+ efflux to the serosal compartment.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号