首页 | 本学科首页   官方微博 | 高级检索  
     


Metabolism of [6]-shogaol in mice and in cancer cells
Authors:Chen Huadong  Lv Lishuang  Soroka Dominique  Warin Renaud F  Parks Tiffany A  Hu Yuhui  Zhu Yingdong  Chen Xiaoxin  Sang Shengmin
Affiliation:Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, NC 28081, USA.
Abstract:Ginger has received extensive attention because of its antioxidant, anti-inflammatory, and antitumor activities. However, the metabolic fate of its major components is still unclear. In the present study, the metabolism of [6]-shogaol, one of the major active components in ginger, was examined for the first time in mice and in cancer cells. Thirteen metabolites were detected and identified, seven of which were purified from fecal samples collected from [6]-shogaol-treated mice. Their structures were elucidated as 1-(4'-hydroxy-3'-methoxyphenyl)-4-decen-3-ol (M6), 5-methoxy-1-(4'-hydroxy-3'-methoxyphenyl)-decan-3-one (M7), 3',4'-dihydroxyphenyl-decan-3-one (M8), 1-(4'-hydroxy-3'-methoxyphenyl)-decan-3-ol (M9), 5-methylthio-1-(4'-hydroxy-3'-methoxyphenyl)-decan-3-one (M10), 1-(4'-hydroxy-3'-methoxyphenyl)-decan-3-one (M11), and 5-methylthio-1-(4'-hydroxy-3'-methoxyphenyl)-decan-3-ol (M12) on the basis of detailed analysis of their (1)H, (13)C, and two-dimensional NMR data. The rest of the metabolites were identified as 5-cysteinyl-M6 (M1), 5-cysteinyl-[6]-shogaol (M2), 5-cysteinylglycinyl-M6 (M3), 5-N-acetylcysteinyl-M6 (M4), 5-N-acetylcysteinyl-[6]-shogaol (M5), and 5-glutathiol-[6]-shogaol (M13) by analysis of the MS(n) (n = 1-3) spectra and comparison to authentic standards. Among the metabolites, M1 through M5, M10, M12, and M13 were identified as the thiol conjugates of [6]-shogaol and its metabolite M6. M9 and M11 were identified as the major metabolites in four different cancer cell lines (HCT-116, HT-29, H-1299, and CL-13), and M13 was detected as a major metabolite in HCT-116 human colon cancer cells. We further showed that M9 and M11 are bioactive compounds that can inhibit cancer cell growth and induce apoptosis in human cancer cells. Our results suggest that 1) [6]-shogaol is extensively metabolized in these two models, 2) its metabolites are bioactive compounds, and 3) the mercapturic acid pathway is one of the major biotransformation pathways of [6]-shogaol.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号