首页 | 本学科首页   官方微博 | 高级检索  
     


Molecular basis of estrogen-induced cyclooxygenase type 1 upregulation in endothelial cells
Authors:Gibson Linda L  Hahner Lisa  Osborne-Lawrence Sherri  German Zohre  Wu Kenneth K  Chambliss Ken L  Shaul Philip W
Affiliation:Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, TX 75390, USA.
Abstract:Estrogen upregulates cyclooxygenase-1 (COX-1) expression in endothelial cells. To determine the basis of this process, studies were performed in ovine endothelial cells transfected with the human COX-1 promoter fused to luciferase. Estradiol (E2) caused activation of the COX-1 promoter with maximal stimulation at 10(-8) mol/L E2, and the response was mediated by either ERalpha or ERbeta. Mutagenesis revealed a primary role for a putative Sp1 binding motif at -89 (relative to the ATG codon) and lesser involvement of a consensus Sp1 site at -111. Electrophoretic mobility shift assays yielded a single complex with the site at -89, and supershift analyses implicated AP-2alpha and ERalpha, and not Sp1, in protein-DNA complex formation. In endothelial cells with minimal endogenous ER, the transfection of ERalpha mutants lacking the DNA binding domain or primary nuclear localization signals caused 4-fold greater stimulation of promoter activity with E2 than wild-type ERalpha. In contrast, mutant ERalpha lacking the A-B domains was inactive. Thus, estrogen-mediated upregulation of COX-1 in endothelium is uniquely independent of direct ERalpha-DNA binding and instead entails protein-DNA interaction involving AP-2alpha and ERalpha at a proximal regulatory element. In addition, the process may be initiated by cytoplasmic ERalpha, and critical receptor elements reside within the amino terminus.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号