MRI using a concentric rings trajectory. |
| |
Authors: | Hochong H Wu Jin Hyung Lee Dwight G Nishimura |
| |
Affiliation: | Magnetic Resonance Systems Research Laboratory, Department of Electrical Engineering, Stanford University, Stanford, California, USA. hochong@stanford.edu |
| |
Abstract: | The concentric rings two-dimensional (2D) k-space trajectory provides an alternative way to sample polar data. By collecting 2D k-space data in a series of rings, many unique properties are observed. The concentric rings are inherently centric-ordered, provide a smooth weighting in k-space, and enable shorter total scan times. Due to these properties, the concentric rings are well-suited as a readout trajectory for magnetization-prepared studies. When non-Cartesian trajectories are used for MRI, off-resonance effects can cause blurring and degrade the image quality. For the concentric rings, off-resonance blur can be corrected by retracing rings near the center of k-space to obtain a field map with no extra excitations, and then employing multifrequency reconstruction. Simulations show that the concentric rings exhibit minimal effects due to T(2) (*) modulation, enable shorter scan times for a Nyquist-sampled dataset than projection-reconstruction imaging or Cartesian 2D Fourier transform (2DFT) imaging, and have more spatially distributed flow and motion properties than Cartesian sampling. Experimental results show that off-resonance blurring can be successfully corrected to obtain high-resolution images. Results also show that concentric rings effectively capture the intended contrast in a magnetization-prepared sequence. |
| |
Keywords: | non‐Cartesian trajectories concentric rings off‐resonance correction magnetization preparation polar sampling |
|
|