首页 | 本学科首页   官方微博 | 高级检索  
     


Twitch potentiation after fatiguing exercise in man
Authors:S. E. Alway  R. L. Hughson  H. J. Green  A. E. Patla  J. S. Frank
Affiliation:(1) Department of Kinesiology, University of Waterloo, N2L 3G1 Waterloo, Ontario, Canada
Abstract:Summary Twitch potentiation was studied in the human triceps surae complex before and after intermittent maximal voluntary contractions or electrical stimulation at 20 Hz. Both forms of exercise were conducted with intact circulation for a maximum of 10 min or with circulatory occlusion until force output declined 50%. The relative potentiation was determined when a control twitch was compared to a twitch obtained after 5 s of maximal voluntary plantar flexion. The unpotentiated twitch torque (PT) and potentiated twitch torque (PT*) were reduced most severely after voluntary ischemic exercise (63.2% and 52.5% respectively, (P<0.001)). However, the relative potentiation (PT*/PT) immediately after voluntary ischemic exercise increased to 1.65±0.18 from 1.22±0.13 at rest. Both PT and PT* recovered quickly after exercise. At rest, twitch contraction time (CT) and one-half relaxation time (1/2 RT) in the unpotentiated twitch were longer than that of contraction (CT*) and one-half relaxation time (1/2 RT*) in the potentiated twitch. Following non-occluded exercise, CT, CT*, 1/2 RT and 1/2 RT* were shortened relative to rest. After ischemic exercise CT and CT* were shortened although 1/2 RT and 1/2 RT* increased relative to rest. Both CT* and 1/2 RT* quickly recovered to pre-exercise values by 5 min post-exercise. Ratios of potentiated/control twitch parameters were not altered after nonoccluded exercise, but were increased after ischemic exercise. These results suggest that the mechanisms of fatigue which depress voluntary torque and twitch and potentiated twitch torques, do not interfere with the extent of potentiation after fatiguing exercise.This study was supported by the Medical Research Council of Canada
Keywords:Human triceps surae  Twitch potentiation  Twitch contraction time  Twitch relaxation time  Isometric contraction  Muscle fatigue
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号