首页 | 本学科首页   官方微博 | 高级检索  
     


Cytochrome p450-dependent lipid metabolism in preovulatory follicles
Authors:Newman J W  Stok J E  Vidal J D  Corbin C J  Huang Q  Hammock B D  Conley A J
Affiliation:Veterinary Medicine-Population Health & Reproduction, School of Veterinary Medicine, 1131 Tupper Hall, University of California, Davis California 95616, USA.
Abstract:Estrogen biosynthesis and proteolysis are both important processes involved in ovarian follicular development, which may be influenced by cytochrome P450 (CYP)-dependent fatty acid metabolites. However, CYP-dependent lipid metabolism has not been characterized with respect to follicular maturation in vivo. Therefore, follicular fluid was collected in the hours before and after the LH surge in pigs, and concentrations of epoxy, hydroxy, and dihydroxy lipids were measured by liquid chromatography tandem mass spectrometry. Arachidonate oxidation and epoxyeicosatrienoic acid hydrolysis to dihydroxyeicosatrienoic acids (DHETs) were also assessed in thecal and granulosa tissue fractions, and the expression of CYP epoxygenases was evaluated by immunoblots using available antisera. To evaluate soluble epoxide hydrolase (sEH) expression, the porcine sEH was cloned from ovarian tissue, expressed and purified for antibody generation. The follicular fluid oxylipin concentrations ranged from 1-150 nm depending on the compound and estrous stage. The follicular fluid concentrations of CYP-dependent oxylipins increased at estrus, as did sEH expression; however, significant changes in epoxides were not observed, and the 11,12-DHET peak was delayed. The ratio of 14,15-DHET:11,12-DHET across all samples correlated with the log of follicular fluid estradiol concentrations (P < 0.01). Epoxygenase activities were similar in theca and granulosa, varying little with follicular development, whereas the decline of a single CYP2J isoform at ovulation was observed by immunoblots. The sEH activity was higher in granulosa than in theca. Finally, the dynamic changes in follicular CYP-dependent arachidonic acid metabolites and their modulatory function in vascular models suggest roles for these metabolites in follicular maturation, which may include regulation of estradiol biosynthesis and preovulatory remodeling of the follicular wall that should be fully explored in future studies.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号