首页 | 本学科首页   官方微博 | 高级检索  
检索        


Predicting the solubility of sulfamethoxypyridazine in individual solvents. II: Relationship between solute-solvent interaction terms and partial solubility parameters
Authors:A Martin  P Bustamante  B Escalera  E Sellés
Institution:Drug Dynamics Institute, College of Pharmacy, University of Texas, Austin 78712.
Abstract:In the first paper in the series, an expanded system of parameters was devised to account for orientation and induction effects, and the term Wh was introduced to replace delta 1h delta 2h of the extended Hansen solubility approach. In the present report, a new term, Kh = Wh/delta 1h delta 2h is observed to take on values larger or smaller than unity depending on whether the hydrogen bonded solute-solvent interaction is larger or smaller than predicted by the term delta 1h delta 2h. The acidic delta a and basic delta b solubility parameters are used to represent two parameters, sigma and tau, suggested by Small in his study of proton donor-acceptor properties. The Small equation, including a heat of mixing term for hydrogen bonded species, is shown to be capable of semiquantitative evaluation. A partial molar heat delta H2h of hydrogen bonding is calculated using delta h and Wh terms; delta H2h is found to be correlated with the logarithm of the residual activity coefficient, In alpha R, a term representing strong solute-solvent interaction. The terms Wh, delta H2h, and In alpha 2R may be used to test the deviation from the geometric mean assumed in regular solution theory, and to replace the hydrogen bonding terms of the extended Hansen three-parameter model. The solubility of sulfamethoxypyridazine in 30 solvents is used to test the semiempirical solubility equations. The results are interpreted in terms of partial solubility parameters and the proton donor-acceptor properties of the solvents.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号