A secondary metabolite, 4,5-dibromopyrrole-2-carboxylic acid, from marine sponges of the genus Agelas alters cellular calcium signals |
| |
Authors: | Bickmeyer Ulf Assmann Michael Köck Matthias Schütt Christian |
| |
Affiliation: | aAlfred-Wegener-Institut für Polar- und Meeresforschung in der Helmholtz-Gemeinschaft, Biologische Anstalt Helgoland, Kurpromenade, D-27498 Helgoland, Germany bAlfred-Wegener-Institut für Polar- und Meeresforschung in der Helmholtz-Gemeinschaft, Am Handelshafen 12, D-27570 Bremerhaven, Germany |
| |
Abstract: | A secondary metabolite from sponges of the genus Agelas, 4,5-dibromopyrrole-2-carboxylic acid, which is well known as feeding deterrent, was investigated for effects on the cellular calcium homeostasis in PC12 cells. 4,5-Dibromopyrrole-2-carboxylic acid did not change intracellular calcium levels if applied alone without cell depolarization. During depolarization of the cellular membrane using high potassium solution, a dose dependent reduction of intracellular calcium elevation was revealed utilizing Fura II as calcium indicator. Significant reduction was seen at concentrations higher than 30 μM in a series of experiments, but in single experiments a concentration of 300 nM was still reversible effective. In the same concentration range, the onset of depolarization induced calcium elevations was significantly delayed by 4,5-dibromopyrrole-2-carboxylic acid. Dose dependent reduction and delay of depolarization evoked calcium elevations are probably due to a reduction of calcium entry via voltage operated calcium channels. One cellular mode of action of the feeding deterrent potential of 4,5-dibromopyrrole-2-carboxylic acid to fishes may be an interaction with the cellular calcium homeostasis of exposed cells. |
| |
Keywords: | Secondary metabolite Sponge Agelas Calcium imaging Fluorescence Calcium entry |
本文献已被 ScienceDirect PubMed 等数据库收录! |
|