首页 | 本学科首页   官方微博 | 高级检索  
检索        


Enhancing obstetric and gynecology ultrasound images by adaptation of the speckle reducing anisotropic diffusion filter
Authors:Munteanu Cristian  Morales Francisco Cabrera  Fernández Javier González  Rosa Agostinho  Déniz Luís Gómez
Institution:Instituto de Sistemas e Robótica, Instituto Superior Técnico, Lisboa, Portugal. cmunteanu@isr.ist.utl.pt
Abstract:OBJECTIVE: So far there is no ideal speckle reduction filtering technique that is capable of enhancing and reducing the level of noise in medical ultrasound (US) images, while efficiently responding to medical experts' validation criteria which quite often include a subjective component. This paper presents an interactive tool called evolutionary speckle reducing anisotropic diffusion filter (EVOSRAD) that performs adaptive speckle filtering on ultrasound B-mode still images. The medical expert runs the algorithm interactively, having a permanent control over the output, and guiding the filtering process towards obtaining enhanced images that agree to his/her subjective quality criteria. METHODS AND MATERIAL: We employ an interactive evolutionary algorithm (IGA) to adapt on-line the parameters of a speckle reducing anisotropic diffusion (SRAD) filter. For a given input US image, the algorithm evolves the parameters of the SRAD filter according to subjective criteria of the medical expert who runs the interactive algorithm. The method and its validation are applied to a test bed comprising both real and simulated obstetrics and gynecology (OB/GYN) ultrasound images. RESULTS: The potential of the method is analyzed in comparison to other speckle reduction filters: the original SRAD filter, the anisotropic diffusion, offset and median filters. Results obtained show the good potential of the method on several classes of OB/GYN ultrasound images, as well as on a synthetic image simulating a real fetal US image. Quality criteria for the evaluation and validation of the method include subjective scoring given by the medical expert who runs the interactive method, as well as objective global and local quality criteria. CONCLUSIONS: The method presented allows the medical expert to design its own filters according to the degree of medical expertise as well as to particular and often subjective assessment criteria. A filter is designed for a given class of ultrasound images and for a given medical expert who will later use the respective filter in clinical practice. The process of designing a filter is simple and employs an interactive visualization and scoring stage that does not require image processing knowledge. Results show that filters tailored using the presented method achieve better quality scores than other more generic speckle filtering techniques.
Keywords:Ultrasound speckle  Anisotropic diffusion  Interactive genetic algorithm
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号