首页 | 本学科首页   官方微博 | 高级检索  
     

基于小波变换和盲源分离算法提取事件相关电位
引用本文:李晓欧,冯焕清. 基于小波变换和盲源分离算法提取事件相关电位[J]. 北京生物医学工程, 2005, 24(4): 246-249
作者姓名:李晓欧  冯焕清
作者单位:中国科学技术大学生物医学工程研究所,合肥,230026;中国科学技术大学生物医学工程研究所,合肥,230026
摘    要:阐述了用小波分解和盲源分离(blind source separation,BSS)算法结合来去除噪声和干扰提取事件相关电位(event-related potential,ERP).采用小波变换分解ERP,抽取出不同频带的细节信息;由小波系数判断选择多个尺度的子带信号,将它们分别与原始ERP组合进行盲分离,方法是极大化信号时间上的可预测性;将分离的结果进一步叠加平均.两类ERP仿真实验结果表明,本文算法提取出的ERP主要成分波明显,易于辨识,信噪比比较单独运用盲分离算法提取出的结果要好.在应用实例中,有效地增强了ERP的μ波.该算法优点在于减少了刺激次数和波形失真,参数变化范围小,在临床上有很好的应用前景.

关 键 词:小波变换  盲源分离  事件相关电位  μ波
文章编号:1002-3208(2005)04-0246-04
收稿时间:2004-03-01
修稿时间:2004-03-01

Extraction of Event-Related Potential Based on Wavelet Transformation and Blind Source Separation
LI Xiaoou,Feng Huanqing. Extraction of Event-Related Potential Based on Wavelet Transformation and Blind Source Separation[J]. Beijing Biomedical Engineering, 2005, 24(4): 246-249
Authors:LI Xiaoou  Feng Huanqing
Abstract:Blind source separation (BSS) combined with wavelet transformation is proposed to remove noises and artifacts, and extract event-related potential (ERP). First, ERP is decomposed by wavelet transformation, the detail signals of different frequency are extracted; Then multi-scale signals are selected by wavelet coefficients, they are differently combined with origin ERP to perform BSS,and the principle is maximizing a measure of temporal predictability for each recovered signal; Finally, the separated results are averaged ulteriorly.Simulation experiment results show this method can extract the distinct characteristic components of ERP.The ERP extracted by this method is distinguished easilier, SNR is higher compared with the results performed by BSS. In application example, mu rhythm of ERP is reinforced effectively. The method decreases stimulus time, distortion, and the parameter range,so it will has good future in clinic application.
Keywords:wavelet transformation BSS ERP mu rhythm
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号