Abstract: | The distribution and heterogeneity of antibody affinity has been followed with time after immunization. Initially, a symmetrical distribution of heterogeneous low affinity antibody molecules is present. With time the population becomes skewed towards the high affinity end of the distribution, the average affinity increases, and the bulk of the antibody generally comes to be present in a subpopulation of high affinity and of relatively restricted heterogeneity. Still later after immunization, the proportion of high affinity antibody decreases and a highly heterogeneous population of antibody molecules is present with a somewhat decreased average affinity. Low affinity subpopulations were found to persist throughout the course of the immune response. In addition it was noted that by day 42 after immunization a significant amount of the highest affinity antibody that a given rabbit would synthesize at any time during its immune response was already present. Thus, changes in average affinity can be accounted for by shifts in the relative amounts of those antibody subpopulations already present by day 42 and do not require the appearance of any new antibody species. The results can be interpreted as consistent with a selection theory of antibody synthesis in which cells of high affinity are preferentially selected in what amounts to a micro-evolutionary system. |