首页 | 本学科首页   官方微博 | 高级检索  
检索        


Analysis of HSD3B7 knockout mice reveals that a 3alpha-hydroxyl stereochemistry is required for bile acid function
Authors:Shea Heidi C  Head Daphne D  Setchell Kenneth D R  Russell David W
Institution:Department of Molecular Genetics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
Abstract:Primary bile acids are synthesized from cholesterol in the liver and thereafter are secreted into the bile and small intestine. Gut flora modify primary bile acids to produce secondary bile acids leading to a chemically diverse bile acid pool that is circulated between the small intestine and liver. A majority of primary and secondary bile acids in higher vertebrates have a 3alpha-hydroxyl group. Here, we characterize a line of knockout mice that cannot epimerize the 3beta-hydroxyl group of cholesterol and as a consequence synthesize a bile acid pool in which 3beta-hydroxylated bile acids predominate. This alteration causes death in 90% of newborn mice and decreases the absorption of dietary cholesterol in surviving adults. Negative feedback regulation of bile acid synthesis mediated by the farnesoid X receptor (FXR) is disrupted in the mutant mice. We conclude that the correct stereochemistry of a single hydroxyl group at carbon 3 in bile acids is required to maintain their physiologic and regulatory functions in mammals.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号