首页 | 本学科首页   官方微博 | 高级检索  
     


O6-methylguanine repair in liver cells in vivo: Comparison between G1- and S-phase of the cell cycle
Authors:H. M. Rabes  R. Kerler  G. Rode  C. Schuster  R. Wilhelm
Affiliation:(1) Institute of Pathology, University of Munich, Thalkirchner Str. 36, D-8000 Munich 2, Federal Republic of Germany
Abstract:Summary To compare the formation and persistance of alkylated DNA bases in the G1- and S-phase compartments in liver in vivo, regnerating rat liver was exposed to [14C]dimethylnitrosamine (0.57 mg/kg, IP injection) or N-[methyl 14C]-N-nitrosourea (3.3 mg/kg, intraportal injection) during the G1 phase of the cell cyle (12 h after partial hepatectomy), or at 24 h after partial hepatectomy with 30% hepatocytes in DNA synthesis, or at 43 h after partial hepatectomy, 4 h after an hydroxyurea block from 14 to 39 h after operation with 80% hepatocytes in DNA synthesis. At 120 min after dimethylnitrosamine and 90 s, 5, 10, or 60 min after the intraportal pulse of N-methyl-N-nitrosourea the molar fractions of 7-methylguanine (7megua), O6-methylguanine (O6megua), and 3-methyladenine (3mead) and of metabolically labeled guanine were determined from DNA hydrolysates by Sephadex-G10 radiochromatography. After dimethylnitrosamine only minor differences were observed for 7megua formation in the three groups; the 3mead/7megua ratio remained constant irrespective of the number of cells in S phase. In contrast, the O6megua/7megua ratio revealed a loss of O6megua, the extent of which appeared proportional to the fraction of DNA-synthesizing cells in the liver. The rapid loss of O6megua in S-phase cells was confirmed after intraportal administration of N-methyl-N-nitrosourea. During the first 10 min after the methylnitrosourea pulse the O6megua/7megua ratio was constant in G1 cells and dropped from 90 s to 10 min by about 15% in liver containing 30% S-phase cells and by about 40% with 80% cells in DNA synthesis. DNA-synthesizing hepatocytes are apparently endowed with a higher O6megua DNA transferase activity than nonproliferating liver cells. The rapid, though exhaustible elimination of O6megua during S-phase might result in partial protection of DNA-synthesizing cells from base-mispairing and/or from hypomethylation at G-C sites.Dedicated to Professor Hermann Druckrey on the occasion of his 80th birthdaySupported by grants from the Deutsche Forschungsgemeinschaft and the Dr. Mildred Scheel-Stiftung
Keywords:Liver cells  Cell cycle  DNA alkylation  O6-Methylguanine repair
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号