首页 | 本学科首页   官方微博 | 高级检索  
检索        


Dexamethasone-induced Ras protein 1 negatively regulates protein kinase C delta: implications for adenylyl cyclase 2 signaling
Authors:Nguyen Chau H  Watts Val J
Institution:Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 Stadium Mall Drive, RHPH 210, West Lafayette, IN 47907, USA.
Abstract:We identified dexamethasone-induced Ras protein 1 (Dexras1) as a negative regulator of protein kinase C (PKC) delta, and the consequences of this regulation have been examined for adenylyl cyclase (EC 4.6.1.1) type 2 (AC2) signaling. Dexras1 expression in human embryonic kidney 293 cells completely abolished dopamine D2 receptor-mediated potentiation of AC2 activity, which is consistent with previous reports of its ability to block receptor-mediated Gbetagamma signaling pathways. In addition, Dexras1 significantly reduced phorbol 12-myristate 13-acetate (PMA)-stimulated AC2 activity but did not alter Galpha(s)-mediated cAMP accumulation. Dexras1 seemed to inhibit PMA stimulation of AC2 by interfering with PKCdelta autophosphorylation. This effect was selective for the delta isoform because Dexras1 did not alter autophosphorylation of PKCalpha or PKCepsilon. Dexras1 disruption of PKCdelta autophosphorylation resulted in a significant blockade of PKC kinase activity as measured by gamma-32P]ATP incorporation using a PKC-specific substrate. Moreover, Dexras1 and PKCdelta coimmunoprecipitated from whole-cell lysates. Dexras1 did not alter the membrane translocation of PKCdelta; however, the ability of Dexras1 to interfere with PKCdelta autophosphorylation was isoprenylation-dependent as determined using the farnesyltransferase inhibitor methyl {N-2-phenyl-4-N 2(R)-amino-3-mecaptopropylamino] benzoyl]}-methionate (FTI-277) and a CAAX box-deficient Dexras1 (C277S) mutant. PMA-stimulated AC2 activity was also not affected by Dexras1 C277S. Taken as a whole, these data suggest that Dexras1 functionally interacts with PKCdelta at the cellular membrane through an isoprenylation-dependent mechanism to negatively regulate PKCdelta activity. Moreover our study suggests that Dexras1 acts to modulate the activation of AC2 in an indirect fashion by inhibiting both Gbetagamma- and PKC-stimulated AC2 activity. The current study provides a novel role for Dexras1 in signal transduction.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号