首页 | 本学科首页   官方微博 | 高级检索  
     


Brain nucleic acid composition and fractional rates of protein synthesis in response to chronic ethanol feeding: Comparison with skeletal muscle
Affiliation:1. Laboratory of Manipulation of Oocytes Enclosed in Preantral Follicles (LAMOFOPA), Faculty, State University of Ceará, Av. Paranjana, 1700, Campus do Itaperi, Fortaleza, CE 60740-000, Brazil;2. Postgraduate Biotechnology, Potiguar University/Laureate International Universities, Av. Senador Salgado Filho, 1610, Lagoa Nova, Natal, CE 59056-000, Brazil;3. Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of San Francisco Valley, Petrolina, PE, Brazil
Abstract:Brain atrophy is a common feature of chronic alcohol misuse, although the pathogenic mechanisms are unknown. We propose that defects in protein synthesis are contributing events. To test this hypothesis the experimental effects of chronic (i.e., 2 and 3 weeks) ethanol feeding on brain nucleic acid composition and rates of protein synthesis in vivo were investigated. These were compared with those of skeletal muscle (represented by the plantaris). Male Wistar rats, used at mean body weights of either 82 g (first study for 2 weeks) or 93 g (second study for 3 weeks) were fed a nutritionally complete liquid diet in which ethanol comprised a third of the total calories. Control rats were pair-fed identical amounts of the same diet, in which ethanol was substituted by isoenergetic glucose. At 2 weeks there were small reductions (i.e., approximately 5–10%) in the weight of the whole brain, cortex, and brain stem. Ethanol-induced reductions in the total protein content of the brain stem was found at 2 weeks, although these changes did not achieve significance. At 3 weeks the weights of whole brain were significantly reduced compared to a greater reduction in skeletal muscle weights. Total protein contents were reduced at 3 weeks in the whole brain and skeletal muscle. At 2 weeks there were decreases in the RNA contents of the cortex, brain stem, and entire brain. There were also reductions in cerebellum RNA composition only when expressed relative to DNA. The DNA composition of the brain was relatively unaffected by chronic ethanol feeding. At 3 weeks, total RNA and DNA were reduced in the whole brain and muscle. Fractional rates of protein synthesis (i.e., the percentage of tissue protein pool renewed each day) in the brain were unaltered after 3 weeks of ethanol feeding, but were reduced in skeletal muscles, largely as a consequence of reduced RNA composition. In conclusion, only moderate changes in the brain were found in ethanol feeding. These data can be compared to skeletal muscle, which shows that ethanol induces profound reductions in protein, RNA, and protein synthesis rates.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号