Colocalization of elastase and myeloperoxidase in human blood and bone marrow neutrophils using a monoclonal antibody and immunogold. |
| |
Authors: | E. M. Cramer J. E. Beesley K. A. Pulford J. Breton-Gorius D. Y. Mason |
| |
Affiliation: | Département d''angio-hématologie, Hôpital Lariboisière, Paris, France. |
| |
Abstract: | The authors have localized elastase in human blood and bone marrow neutrophils by immunoelectron microscopy using a monoclonal anti-human elastase antibody (NP 57) and compared its distribution with myeloperoxidase (MPO) and lactoferrin (LF), which mark primary and secondary neutrophil granule, respectively. Human bone marrow and blood polymorphonuclear leukocytes (PMN), either unstimulated or after phagocytosis of latex microbeads, were fixed in 4% paraformaldehyde. Ultrathin frozen sections were immunolabeled with NP 57, followed by an immunogold probe. In bone marrow granulocyte precursors elastase appeared simultaneously in the immature first granules of myeloblasts with MPO. As these granules became denser with maturation, labeling for both enzymes became weaker and sometimes negative (possibly due to masking of immunoreactivity). The ellipsoidal primary granules were strongly labeled by NP57. LF positive granules appeared later, at the myelocyte stage, and contained neither MPO nor elastase. In mature neutrophils, immunolabeling for elastase was found together with MPO in the large electron-dense primary granules and in a different granule population from the LF-positive secondary granules. Double labeling with two different-sized gold particles was used to compare the kinetics of degranulation of secondary and primary granules. The observation and the analysis of single phagosome content was made possible by this new technique. In conclusion, immunoelectron microscopy was used to show elastase in the primary granules of neutrophils, where it appears simultaneously with MPO. This technique has also allowed comparison of the kinetics of degranulation of both types of granules, and could be applied to different experimental and pathologic conditions. |
| |
Keywords: | |
|
|