A model of neonatal tidal liquid ventilation mechanics |
| |
Authors: | Costantino M L Fiore G B |
| |
Affiliation: | Dipartimento di Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milan, Italy. costantino@biomed.polimi.it |
| |
Abstract: | Tidal liquid ventilation (TLV) with perfluorocarbons (PFC) has been proposed to treat surfactant-deficient lungs of preterm neonates, since it may prevent pulmonary instability by abating saccular surface tension. With a previous model describing gas exchange, we showed that ventilator settings are crucial for CO(2) scavenging during neonatal TLV. The present work is focused on some mechanical aspects of neonatal TLV that were hardly studied, i.e. the distribution of mechanical loads in the lungs, which is expected to differ substantially from gas ventilation. A new computational model is presented, describing pulmonary PFC hydrodynamics, where viscous losses, kinetic energy changes and lung compliance are accounted for. The model was implemented in a software package (LVMech) aimed at calculating pressures (and approximately estimate shear stresses) within the bronchial tree at different ventilator regimes. Simulations were run taking the previous model's outcomes into account. Results show that the pressure decrease due to high saccular compliance may compensate for the increased pressure drops due to PFC viscosity, and keep airway pressure low. Saccules are exposed to pressures remarkably different from those at the airway opening; during expiration negative pressures, which may cause airway collapse, are moderate and appear in the upper airways only. Delivering the fluid with a slightly smoothed square flow wave is convenient with respect to a sine wave. The use of LVMech allows to familiarize with LV treatment management taking the lungs' mechanical load into account, consistently with a proper respiratory support. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|