首页 | 本学科首页   官方微博 | 高级检索  
     

湖南省气温对新型冠状病毒肺炎发病数的滞后影响
引用本文:毛倩, 刘玉洁, 王喆, 管佩霞, 肖宇飞, 朱高培, 孟维静, 王素珍, 石福艳. 湖南省气温对新型冠状病毒肺炎发病数的滞后影响[J]. 中华疾病控制杂志, 2021, 25(4): 405-410. doi: 10.16462/j.cnki.zhjbkz.2021.04.007
作者姓名:毛倩  刘玉洁  王喆  管佩霞  肖宇飞  朱高培  孟维静  王素珍  石福艳
作者单位:1.261053 潍坊,潍坊医学院公共卫生学院卫生统计学系;;2.261053 潍坊,潍坊医学院生命科学与技术学院学生工作办公室
基金项目:国家自然科学基金81803337国家自然科学基金81872719国家统计局课题2018LY79山东省自然科学基金ZR2019MH034山东省高等学校青创人才引育计划2019-6-156山东省高等学校青创人才引育计划Lu-Jiao潍坊医学院博士启动基金2017BSQD51
摘    要:目的  研究湖南省日均气温对COVID-19日发病数的滞后影响,为疫情的有效防控提供科学依据。方法  本研究对2020年1月21日―2020年3月2日湖南省气象因素和空气质量因素与COVID-19日发病数进行Spearman相关分析和分布滞后非线性模型分析。结果  观察期间,湖南省新型冠状病毒肺炎报告新发病例共1 018例。分布滞后非线性模型结果显示,日均气温与COVID-19日发病数的关系呈非线性,累积发病风险随气温的升高而降低,且发病人群的气温风险最低点为0 ℃。高温对日发病数的影响为短期即时效应,低温对每日发病人数的影响具有滞后性,滞后效应长达12 d,当日均温为-5 ℃,滞后天数为8 d时,相对危险度最高(RR=2.20, 95% CI=1.16~4.19),且高温(10 ℃)较低温(6 ℃)影响更为显著。结论  气温是影响湖南省COVID-19发病的因素,且有滞后性;高温和低温均可导致发病风险升高,应针对脆弱人群和危重患者加强防护措施从而降低发病风险。

关 键 词:分布滞后非线性模型   日均气温   日发病数   COVID-19
收稿时间:2020-07-27
修稿时间:2020-11-29

Lag effect of temperature on the incidence of COVID-19 in Hunan Province
MAO Qian, LIU Yu-jie, WANG Zhe, GUAN Pei-xia, XIAO Yu-fei, ZHU Gao-pei, MENG Wei-jing, WANG Su-zhen, SHI Fu-yan. Lag effect of temperature on the incidence of COVID-19 in Hunan Province[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2021, 25(4): 405-410. doi: 10.16462/j.cnki.zhjbkz.2021.04.007
Authors:MAO Qian  LIU Yu-jie  WANG Zhe  GUAN Pei-xia  XIAO Yu-fei  ZHU Gao-pei  MENG Wei-jing  WANG Su-zhen  SHI Fu-yan
Affiliation:1. Department of Health Statistics, School of Public Health, Weifang Medical University, Weifang 261053, China;;2. Student Affairs Office, School of Life Science and Technology, Weifang Medical University, Weifang 261053, China
Abstract:  Objective  To explore the lag effect of daily average temperature on the incidence of coronavirus disease 2019 (COVID-19) in Hunan Province and to provide scientific evidences for effective prevention of COVID-19.  Methods  The meteorological factors, the air quality factors and the data conincidence of COVID-19 reported in Hunan Province during January 21, 2020 to March 2, 2020 were collected. Spearman correlation and distributed lag non-linear model analysis were performed.  Results  A total of 1 018 COVID-19 cases were reported in Hunan Province. The distribution lag non-linear model results showed that the influence of daily average temperature on the incidence of COVID-19 presented a nonlinear relationship. The cumulative relative incidence risk of COVID-19 decreased with the increase of daily average temperature, and the lowest temperature risk of the patients was 0 ℃. Both cold temperature and hot temperature increased incidence risk of COVID-19. It was indicated that the hot effects were immediate, however, the cold effects with obvious lag effect persisted up to 12 days. The highest relative risk of COVID-19 incidence was associated with lag 8-day daily average temperature of -5 ℃(RR=2.20, 95% CI=1.16-4.19). The influence of high temperature(10 ℃) was more significant than that of low temperature(6 ℃).  Conclusion  The daily average temperature, especially cold or hot temperature, was an important influencing factor of the incidence of COVID-19 in Hunan Province, which had lag influence on the incidence of COVID-19. We suggested that some related preventive measures should be adopted to protect vulnerable population and severe patients to reduce the incidence risk.
Keywords:Distributional lag non-linear model  Daily average temperature  Daily incidence  COVID-19
本文献已被 万方数据 等数据库收录!
点击此处可从《中华疾病控制杂志》浏览原始摘要信息
点击此处可从《中华疾病控制杂志》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号