首页 | 本学科首页   官方微博 | 高级检索  
检索        


Absorption,Metabolism, and Excretion of 2,3:4,5-Bis(2-Butylene) Tetrahydro-2 Furaldehyde (Mgk R11)in the Rat
Abstract:Abstract

Experiments were conducted in four groups of rats to determine the absorption, distribution, metabolism, and excretion (ADME) patterns following oral administration of formyl-14C] 2,3:4,5-bis(2-butylene) tetrahydro-2 furaldehyde (MGK R11).

Ten rats (five males and five females) were used in each of the four experiments. Fasted rats were administered for-myl-14C] MGK R11 at a single oral dosage of 65 mg/kg, at a single oral dosage of 1000 mg/kg, and at a daily oral dosage of 65 mg/kg of nonradiolabeled compound for 14 days followed by a single dose of 14C-labeled compound at 65 mg/kg. Rat blood kinetics were determined in the fourth group following a single oral dose of 65 mg/ kg. Each animal was administered approximately 12–14 μCi of radioactivity.

Urine and feces were collected from all groups at predetermined time intervals. Seven days after dose administration, the rats were euthanized and selected tissues and organs were harvested. Samples of urine, feces, and tissues were subsequently analyzed for 14C content.

In the blood kinetics study, radioactivity peaked at approximately 30 min in both the males and females, indicating very rapid absorption. The decline of radioactivity from blood followed a biphasic elimination pattern. The first half-life was 1.36 h for males and 1.18 h for females. In the second phase, the half-life was 21 h for males and 26 h for females.

Female rats excreted 67.21-86.85% of the radioactivity in urine and 13.99–28.08% in feces, whereas male rats excreted 50.19–64.37% of the administered radioactivity in urine and 31.43–40.94% in feces. Tissue residues of 14C ranged between 0.47% and 1.09% of the administered dose. The total mean recovered radioactivity of the administered dose in the four definitive studies ranged between 92% and 101%. No parent compound was detected in the urine.

Three major and one minor metabolite was isolated by high-performance liquid chromatography (HPLC) and identified by gas chromatography/mass spectrometry (GC/MS). One major metabolite was formed by oxidation of the aldehyde moiety to the carboxylic acid. A second metabolite was the glucuronic acid conjugate of the carboxylic acid and the third was formed by reduction of the aldehyde moiety of MGK R11 to an alcohol followed by glucuronic acid conjugation. The minor metabolite was the unconjugated alcohol derivative of MGK R11.

The gender of the animals affected the rate, route of excretion, and metabolic profile. The urinary excretion rate was faster in females than in males and the amount excreted was also greater in female rats.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号