首页 | 本学科首页   官方微博 | 高级检索  
     


P2X7 receptors contribute to the currents induced by ATP in guinea pig intestinal myenteric neurons
Authors:Valdez-Morales Eduardo  Guerrero-Alba Raquel  Liñán-Rico Andrómeda  Espinosa-Luna Rosa  Zarazua-Guzman Sergio  Miranda-Morales Marcela  Montaño Luis M  Barajas-López Carlos
Affiliation:aDivisión de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí, SLP, México;bDepartamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, México DF, México
Abstract:The whole-cell configuration, several pharmacological tools, and single-cell RT-PCR were used to investigate the contribution of P2X7 subunits to the ATP-induced currents (IATP) in guinea pig myenteric neurons. IATP was recorded in the great majority of tested neurons. ATP concentration-response curve (0.01–10 mM) showed two phases, the first mediated by high-sensitive P2X receptors (hsP2X receptors), observed between 0.01–0.3 mM and the second mediated by low-sensitive P2X receptors (lsP2X receptors). The calculated EC50 values of these phases were 38 and 1759 μM, respectively. 2′-3′-O-(4-benzoylbenzoyl)-ATP (BzATP) concentration-response curve was monophasic (0.01–1 mM), and less potent (EC50 142 μM) than ATP to activate hsP2X receptors. A strong inward rectification was noticed when hsP2X receptors were activated with ATP (0.1 mM) and for BzATP-induced currents (0.1 mM; IBzATP) but a significant lower rectification was noticed when lsP2X receptors were activated (5 mM). Brilliant blue G (BBG) at a concentration of 0.3 μM (known to inhibit only P2X7 receptors) reduced IATP when lsP2X receptors contributed to it but neither affect hsP2X receptors nor IBzATP. However, hsP2X receptors and IBzATP were both inhibited by concentrations ≥ 1 μM of this antagonist. BzATP inhibited hsP2X receptors and therefore, it behaves as partial agonist on these receptors. Using the single-cell RT-PCR technique P2X7 mRNA was detectable in 7 out of 13 myenteric neurons exhibiting P2X2 mRNA. Altogether, our results show that low-sensitive P2X receptors are likely P2X7, whereas, the high-sensitive P2X channels are probably constituted, at least in part, by P2X2 subunits.
Keywords:Small intestine   Enteric neurons   Myenteric plexus   P2X receptors   P2X2 receptors   Patch-Clamp   RT-PCR   (Guinea pig)
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号