首页 | 本学科首页   官方微博 | 高级检索  
     


Inhibition of cytokine-induced microvascular arrest of tumor cells by recombinant endostatin prevents experimental hepatic melanoma metastasis
Authors:Mendoza Lorea  Valcárcel María  Carrascal Teresa  Egilegor Eider  Salado Clarisa  Sim B Kim Lee  Vidal-Vanaclocha Fernando
Affiliation:Dominion-Pharmakine Ltd., Bizkaia Technology Park, Bizkaia, Spain.
Abstract:We investigated effects of endostatin (ES) in the prometastatic microenvironment of inflammation occurring during the microvascular phase of cancer cell infiltration in the liver. We used a model of intrasplenic injection of B16 melanoma (B16M) cells leading to hepatic metastasis through vascular cell adhesion molecule-(VCAM-1)-mediated capillary arrest of cancer cells via interleukin-18 (IL-18)-dependent mechanism. We show that administration of 50 mg/kg recombinant human (rh) ES 30 min before B16M, plus repetition of same dose for 3 additional days decreased metastasis number by 60%. A single dose of rhES before B16M injection reduced hepatic microvascular retention of luciferase-transfected B16M by 40% and inhibited hepatic production of tumor necrosis factor alpha (TNF-alpha) and IL-18 and VCAM-1 expression by hepatic sinusoidal endothelia (HSE). Consistent with these data, rhES inhibited VCAM-1-dependent B16M cell adhesion to primary cultured HSE receiving B16M conditioned medium, and it abolished the HSE cell production of TNF-alpha and IL-18 induced by tumor-derived vascular endothelial cell growth factor (VEGF). rhES abrogated recombinant murine VEGF-induced tyrosine phosphorylation of KDR/flk-1 receptor in HSE cells, preventing the proinflammatory action of tumor-derived VEGF on HSE. rhES also abolished hepatic production of TNF-alpha, microvascular retention of luciferase-transfected B16M, and adhesion of B16M cells to isolated HSE cells, all of them induced in mice given 5 micro g/kg recombinant murine VEGF for 18 h. This capillary inflammation-deactivating capability constitutes a nonantiangiogenic antitumoral action of endostatin that decreases cancer cell arrest within liver microvasculature and prevents metastases promoted by proinflammatory cytokines induced by VEGF.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号