首页 | 本学科首页   官方微博 | 高级检索  
     

基于F-score特征选择和支持向量机的P300识别算法
引用本文:杨立才,李金亮,姚玉翠,吴晓晴. 基于F-score特征选择和支持向量机的P300识别算法[J]. 生物医学工程学杂志, 2008, 25(1): 23-26,52
作者姓名:杨立才  李金亮  姚玉翠  吴晓晴
作者单位:山东大学,控制科学与工程学院,济南,250061
摘    要:如何从脑电信号中快速准确地识别出P300成分是脑-机接口研究中的一个热点问题.针对P300的识别问题,我们提出了一种将F-score特征选择与支持向量机相结合的判别方法,该方法采用F-score特征选择减少输入特征的维数,以克服支持向量机算法判别速度慢的缺点;然后借助支持向量机算法良好的分类性能实现P300的识别.本文在BCI Competition 2003的P300实验数据集上对该方法进行了验证,结果表明,在5次重复实验中该方法的识别准确率达到了100%,且判别速度与未经特征选择的传统支持向量机算法相比提高了近2倍.

关 键 词:脑-机接口  P300 F-score特征选择  支持向量机  特征选择  支持向量机算法  识别算法  Support Vector Machines  Feature Selection  Based  准确率  结果  验证  数据集  实验  Competition  分类性能  速度  判别方法  维数  输入  结合  识别问题  热点问题
文章编号:1001-5515(2008)01-0023-04
收稿时间:2006-01-09
修稿时间:2006-04-13

A P300 Detection Algorithm Based on F-score Feature Selection and Support Vector Machines
Yang Licai,Li Jinliang,Yao Yucui,Wu Xiaoqing. A P300 Detection Algorithm Based on F-score Feature Selection and Support Vector Machines[J]. Journal of biomedical engineering, 2008, 25(1): 23-26,52
Authors:Yang Licai  Li Jinliang  Yao Yucui  Wu Xiaoqing
Affiliation:School of Control Science & Engineering, Shandong University, Ji'nan 25061, China. yanglc@sdu.edu.cn
Abstract:How to detect the P300 component in EEG accurately and instandy is a hot problem in the research field of Brain-Computer Interface. In this paper, an algorithm based on F-score feature selection and support vector machines was introduced for P300 detection. Using F-score feature selection method, we reduced input features to overcome the shortooming of support vector machines in terms of low detection speed, and then implemented the detection of P300 oomponent with support vector machines, which have good classification performance. The algorithm was tested with a P300 dataset from the BCI competition 2003. The results showed that the algorithm achieved an accuracy of 100 % in P300 detection within five repetitions, and the detection speed of this algorithm was 2 times higher than that of the traditional support vector machines algorithm without F-score feature selection.
Keywords:Brain-Computer interface P300 F-score feature selection Support vector machines(SVM)
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号