首页 | 本学科首页   官方微博 | 高级检索  
     

基于匹配追踪的脑磁图体感诱发信号提取方法
引用本文:郭 洁 严汉民. 基于匹配追踪的脑磁图体感诱发信号提取方法[J]. 中国医学装备, 2014, 0(5): 48-51
作者姓名:郭 洁 严汉民
作者单位:首都医科大学宣武医院医学工程科,北京100053
摘    要:目的:利用匹配追踪(MP)算法的良好参数化描述特性,研究癫痫脑磁图的时频分布特征。方法:提出应用MP算法提取体感诱发磁场(SEF)信号的详细的时频成分。结果:对多例正常受试者的体感诱发脑磁图信号进行时频分析,从中提出大部分信号中都存在的时频成分,表明系列稳定的SEF时频成分可使用MP分解算法识别。结论:体感诱发信号通过MP分解,能够产生稳定和微小的时频成分,并且这些成分在时频中具有特定的位置,从而为临床脑功能和脑部疾患发病机制的研究提供可靠的研究指标。

关 键 词:脑磁图  体感诱发磁场  短时傅里叶变换  匹配追踪

Extraction method of the magnetoencephalography somatosensory evoked signals based on the MP decomposition
GUO Jie;YAN Han-min. Extraction method of the magnetoencephalography somatosensory evoked signals based on the MP decomposition[J]. China Medical Equipment, 2014, 0(5): 48-51
Authors:GUO Jie  YAN Han-min
Affiliation:GUO Jie;YAN Han-min(Department of Medical Engineering, Xuanwu Hospital, Capital Medical University; Beijing 100053, China.)
Abstract:Objective: Matching pursuit algorithm(MAP),for its good parametric characterization, is applied in Magnetoencephalography(MEG) to study time-frequency distribution. Methods: This paper proposes to apply a high-resolution time-frequency analysis algorithm, the matching pursuit(MP), to extract detailed time-frequency components of SEF signals. Results: Experimental results on cortical SEF signals of several normal subjects show that a series of stable SEF time components can be identified using the MP decomposition algorithm. Conclusion: This study shows that there is a set of stable and minute time-frequency componentsin SEF signals, which are revealed by the MP decomposition. These stable SEF components have specific localizations in the time domain and may provide a reliable index for clinical research of brain function and brain disease pathogenesis.
Keywords:Magnetoencephalography  Somatosensory evoked fields  Short time fourier transform  Matching pursuit
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号