首页 | 本学科首页   官方微博 | 高级检索  
     


The cognitive functions of the caudate nucleus
Authors:Grahn Jessica A  Parkinson John A  Owen Adrian M
Affiliation:MRC Cognition and Brain Sciences Unit, 15 Chaucer Road, Cambridge CB2 2EF, UK. Jessica.grahn@mrc-cbu.cam.ac.uk
Abstract:The basal ganglia as a whole are broadly responsible for sensorimotor coordination, including response selection and initiation. However, it has become increasingly clear that regions of the basal ganglia are functionally delineated along corticostriatal lines, and that a modular conception of the respective functions of various nuclei is useful. Here we examine the specific role of the caudate nucleus, and in particular, how this differs from that of the putamen. This review considers converging evidence from multiple domains including anatomical studies of corticostriatal circuitry, neuroimaging studies of healthy volunteers, patient studies of performance deficits on a variety of cognitive tests, and animal studies of behavioural control. We conclude that the caudate nucleus contributes to behaviour through the excitation of correct action schemas and the selection of appropriate sub-goals based on an evaluation of action-outcomes; both processes fundamental to successful goal-directed action. This is in contrast to the putamen, which appears to subserve cognitive functions more limited to stimulus-response, or habit, learning. This modular conception of the striatum is consistent with hierarchical models of cortico-striatal function through which adaptive behaviour towards significant goals can be identified (motivation; ventral striatum), planned (cognition; caudate) and implemented (sensorimotor coordination; putamen) effectively.
Keywords:ACA, anterior cingulate area   Ach, acetylcholine   APV, 2-amino-5-phosphonovaleric acid   BLA, basolateral amygdala   BOLD, blood-oxygenation level dependent   caudate (DL), dorsolateral caudate   caudate (VM), ventromedial caudate   cdm-GPi, caudodorsomedial globus pallidus (internal segment)   cl-SNr, caudolateral substantia nigra pars reticulata   DLPFC, dorsolateral prefrontal cortex   DS, dorsal striatum   DTI, diffusion tensor imaging   EDS, extra-dimensional shift   FEF, frontal eye fields   fMRI, functional magnetic resonance imaging   HD, Huntington’s disease   l-dopa, levodopa   l-VAmc, lateral ventral anterior nucleus of thalamus pars magnocellularis   lDS, lateral dorsal striatum   m-VAmc, medial ventral anterior nucleus of thalamus pars magnocellularis   mdm-GPi, dorsomedial globus pallidus (internal segment)   MDmc, magnocellular subnucleus of mediodorsal nucleus of the thalamus   MDpl, parvocellular subnucleus of mediodorsal nucleus of the thalamus   mDS, medial dorsal striatum   NMDA, N-methyl-d-aspartic acid   PD, Parkinson’s disease   PET, positron emission tomography   PFC, prefrontal cortex   pm-MD, posteromedial mediodorsal nucleus of the thalamus   rCBF, regional cerebral blood flow   rd-SNr, rostrodorsal substantia nigra pars reticulata   rl-GPi, rostrolateral globus pallidus (internal segment)   rm-SNr, rostromedial substantia nigra pars reticulata   S-R, stimulus-response   SMA, supplementary motor area   TMS, transcranial magnetic stimulation   vl-GPi, ventrolateral globus pallidus (internal segment)   vl-SNr, ventrolateral substantia nigra pars reticulata   Vlm, ventrolateral nucleus of thalamus pars medialis   VLo, ventrolateral nucleus of thalamus pars oralis   VP, ventral posterior nucleus of the thalamus   VS, ventral striatum
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号