首页 | 本学科首页   官方微博 | 高级检索  
检索        


Activation-induced cytidine deaminase induces DNA break repair events more frequently in the Ig switch region than other sites in the mammalian genome
Authors:Lee Shauna A  Parsa Jahan-Yar  Martin Alberto  Baker Mark D
Institution:Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, Canada.
Abstract:Activation-induced cytidine deaminase (AID) produces DNA breaks in immunoglobulin genes during antibody diversification. Double-stranded breaks (DSB) in the switch region mediate class switch recombination, and contribute to gene conversion and somatic hypermutation in the variable regions. However, the relative extent to which AID induces DSB in these regions or between these and other actively expressed sequences is unknown. Here, we exploited an enhancer-trap plasmid that identifies DSB in actively expressed loci to investigate the frequency and position of AID-induced vector integration events in mouse hybridoma cells. Compared to control cells, wild-type AID stimulates plasmid integration into the genome by as much as 29-fold. Southern and digestion-circularization PCR analysis revealed non-uniformity in the integration sites, with biases of 30- and 116-fold for the immunoglobulin kappa light chain and mu heavy chain genes, respectively. Further, within the immunoglobulin mu gene, 73% of vector integrations map to the mu switch region, an enhancement of five- and 12-fold compared to the adjacent heavy chain variable and mu gene constant regions, respectively. Thus, among potential highly transcribed genes in mouse hybridoma cells, the immunoglobulin heavy and light chain genes are important AID targets, with the immunoglobulin mu switch region being preferred compared to other genomic sites.
Keywords:Activation‐induced cytidine deaminase  B cells  Double‐strand breaks  Somatic hypermutation  Switch region recombination
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号