首页 | 本学科首页   官方微博 | 高级检索  
     


Differentiating autoimmune pancreatitis from pancreatic ductal adenocarcinoma with CT radiomics features
Affiliation:1. The Russell H. Morgan Department of Radiology and Radiological Science, School of Medicine, Johns Hopkins University, JHOC 3140E, 601N. Caroline Street, 21287 Baltimore, USA;2. Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, School of Medicine, Johns Hopkins University, 21287 Baltimore, USA;3. Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, 21287 Baltimore, USA;4. Johns Hopkins University, School of Medicine, Ludwig Center for Cancer Genetics and Therapeutics, 21231 Baltimore, USA;5. Howard Hughes Medical Institute Investigator, Johns Hopkins University School of Medicine, 21231 Baltimore, USA;6. Johns Hopkins University, School of Arts and Sciences, Department of Computer Science, 21218 Baltimore, USA;7. Johns Hopkins University, School of Arts and Sciences, Department of Cognitive Science, 21218 Baltimore, USA;8. Johns Hopkins University, School of Medicine, Department of Surgery, 21287 Baltimore, USA
Abstract:
PurposeThe purpose of this study was to determine whether computed tomography (CT)-based machine learning of radiomics features could help distinguish autoimmune pancreatitis (AIP) from pancreatic ductal adenocarcinoma (PDAC).Materials and MethodsEighty-nine patients with AIP (65 men, 24 women; mean age, 59.7 ± 13.9 [SD] years; range: 21–83 years) and 93 patients with PDAC (68 men, 25 women; mean age, 60.1 ± 12.3 [SD] years; range: 36–86 years) were retrospectively included. All patients had dedicated dual-phase pancreatic protocol CT between 2004 and 2018. Thin-slice images (0.75/0.5 mm thickness/increment) were compared with thick-slices images (3 or 5 mm thickness/increment). Pancreatic regions involved by PDAC or AIP (areas of enlargement, altered enhancement, effacement of pancreatic duct) as well as uninvolved parenchyma were segmented as three-dimensional volumes. Four hundred and thirty-one radiomics features were extracted and a random forest was used to distinguish AIP from PDAC. CT data of 60 AIP and 60 PDAC patients were used for training and those of 29 AIP and 33 PDAC independent patients were used for testing.ResultsThe pancreas was diffusely involved in 37 (37/89; 41.6%) patients with AIP and not diffusely in 52 (52/89; 58.4%) patients. Using machine learning, 95.2% (59/62; 95% confidence interval [CI]: 89.8–100%), 83.9% (52:67; 95% CI: 74.7–93.0%) and 77.4% (48/62; 95% CI: 67.0–87.8%) of the 62 test patients were correctly classified as either having PDAC or AIP with thin-slice venous phase, thin-slice arterial phase, and thick-slice venous phase CT, respectively. Three of the 29 patients with AIP (3/29; 10.3%) were incorrectly classified as having PDAC but all 33 patients with PDAC (33/33; 100%) were correctly classified with thin-slice venous phase with 89.7% sensitivity (26/29; 95% CI: 78.6–100%) and 100% specificity (33/33; 95% CI: 93–100%) for the diagnosis of AIP, 95.2% accuracy (59/62; 95% CI: 89.8–100%) and area under the curve of 0.975 (95% CI: 0.936–1.0).ConclusionsRadiomic features help differentiate AIP from PDAC with an overall accuracy of 95.2%.
Keywords:Radiomics  Texture analysis  Autoimmune pancreatitis  Pancreatic ductal carcinoma  Computed tomography (CT)  AIP"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kw0035"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  Autoimmune pancreatitis  AUC"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kw0045"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  Area under the receiver operating characteristic curve  CI"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kw0055"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  Confidence interval  CT"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kw0065"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  Computed tomography  DW-MRI"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kw0075"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  Diffusion-weighted magnetic resonance imaging  F-fluorodeoxyglucose  HGLRE"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kw0095"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  High gray level run emphasis  HU"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kw0105"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  Hounsfield units  IDMN"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kw0115"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  inverse different moment normalized  IDN"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kw0125"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  inverse difference normalized  IgG4"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kw0135"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  immunoglobulin G4  IMC"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kw0145"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  informational measure of correlation  IPMN"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kw0155"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  intraductal papillary mucinous neoplasms  LGLRE"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kw0165"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  low gray level run emphasis  LHH"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kw0175"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  low-pas filterhigh-pass filter, high-pass filter in Z(inferior-superior), Y(anterior-posterior), X(left-right) directions  LHL"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kw0185"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  low-pas filterhigh-pass filter, low-pass filter in Z(inferior-superior), Y(anterior-posterior), X(left-right) directions  LLH"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kw0195"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  low-pas filterlow-pass filter, high-pass filter in Z(inferior-superior), Y(anterior-posterior), X(left-right) directions  LLL"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kw0205"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  low-pas filterlow-pass filter, low-pass filter in Z(inferior-superior), Y(anterior-posterior), X(left-right) directions  LRHGLE"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kw0215"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  Long run high gray level emphasis  LRLGLE"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kw0225"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  Long run low gray level emphasis  MDCT"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kw0235"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  multidetector computed tomography  MRI"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kw0245"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  magnetic resonance imaging  PDAC"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kw0255"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  pancreatic ductal adenocarcinoma  PET"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kw0265"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  positron emission tomography  PET-CT"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kw0275"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  positron emission tomography-computed tomography  RMS"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kw0285"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  root mean square  ROC"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kw0295"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  receiver operating characteristics  SD"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kw0305"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  standard deviation  3D"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kw0315"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  three-dimensional  SRHGLE"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kw0325"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  short run high gray level emphasis  SRLGLE"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kw0335"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  short run low gay level emphasis
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号