首页 | 本学科首页   官方微博 | 高级检索  
     


Acute and repeated restraint stress influences cellular damage in rat hippocampal slices exposed to oxygen and glucose deprivation
Authors:Fontella Fernanda Urruth  Cimarosti Helena  Crema Leonardo Machado  Thomazi Ana Paula  Leite Marina Concli  Salbego Christianne  Gonçalves Carlos Alberto Saraiva  Wofchuk Susana  Dalmaz Carla  Netto Carlos Alexandre
Affiliation:PPG-Fisiologia e Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Rua Ramiro Barcelos, 2600 anexo, 90035-003 Porto Alegre, RS, Brazil.
Abstract:Several studies have shown that high corticosteroid hormone levels increase neuronal vulnerability. Here we evaluate the consequences of in vivo acute or repeated restraint stress on cellular viability in rat hippocampal slices suffering an in vitro model of ischemia. Cellular injury was quantified by measuring lactate dehydrogenase (LDH) and neuron-specific enolase released into the medium. Acute stress did not affect cellular death when oxygen and glucose deprivation (OGD) was applied both immediately or 24h after restraint. The exposure to OGD, followed by reoxygenation, resulted in increased LDH in the medium. Repeated stress potentiated the effect of OGD both, on LDH and neuron-specific enolase released to the medium. There was no effect of repeated stress on the release of S100B, an astrocytic protein. Additionally, no effect of repeated stress was observed on glutamate uptake by the tissue. These results suggest that repeated stress increases the vulnerability of hippocampal cells to an in vitro model of ischemia, potentiating cellular damage, and that the cells damaged by the exposure to repeated stress+OGD are mostly neurons. The uptake of glutamate was not observed to participate in the mechanisms responsible for rendering the neurons more susceptible to ischemic damage after repeated stress.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号