首页 | 本学科首页   官方微博 | 高级检索  
     


Differential vulnerability of primate caudate-putamen and striosome-matrix dopamine systems to the neurotoxic effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine.
Authors:R Moratalla   B Quinn   L E DeLanney   I Irwin   J W Langston     A M Graybiel
Affiliation:Massachusetts Institute of Technology, Department of Brain and Cognitive Sciences, Cambridge 02139.
Abstract:The meperidine analogue derivative 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induces nigrostriatal fiber damage and severe parkinsonism in humans and animals. MPTP-induced parkinsonism has been proposed as a model of Parkinson disease, but doubts have been raised about whether the patterns of nigrostriatal fiber loss in the two conditions are similar. We report here observations on [3H]mazindol monoamine (principally dopamine) uptake-site binding in the striatum of monkeys (Saimiri sciureus) exposed to low doses of MPTP. We show that this treatment can produce a pattern of nigrostriatal degeneration characteristic of that seen in Parkinson disease, in which there is greater depletion of dopaminergic markers in the putamen than in the caudate nucleus, especially posteriorly. Moreover, within the regions of diminished uptake-site binding in the MPTP-treated monkeys, there is differential preservation of binding in striosomes relative to the surrounding matrix. We suggest that both regional and striosome/matrix patterns of nigrostriatal depletion are key features of MPTP-induced neurodegeneration and that both patterns may provide clues to the mechanisms underlying neurodegeneration in Parkinson disease as well.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号