首页 | 本学科首页   官方微博 | 高级检索  
检索        


Non-invasive Monitoring of Dynamic Cerebrovascular Autoregulation Using Near Infrared Spectroscopy and the Finometer Photoplethysmograph
Authors:Jessica Bindra  Paul Pham  Anders Aneman  Alwin Chuan  Matthias Jaeger
Institution:1.University of New South Wales, South Western Sydney Clinical School,Liverpool BC,Australia;2.Department of Intensive Care Medicine,Liverpool Hospital,Liverpool,Australia;3.Department of Anaesthesia,Liverpool Hospital,Liverpool,Australia;4.Department of Neurosurgery,Wollongong Hospital,Wollongong,Australia
Abstract:

Background

Near infrared spectroscopy (NIRS) enables continuous monitoring of dynamic cerebrovascular autoregulation, but this methodology relies on invasive blood pressure monitoring (iABP). We evaluated the agreement between a NIRS based autoregulation index calculated from invasive blood pressure monitoring, and an entirely non-invasively derived autoregulation index from continuous non-invasive blood pressure monitoring (nABP) using the Finometer photoplethysmograph.

Methods

Autoregulation was calculated as the moving correlation coefficient between iABP and rSO2 (iTOx) or nABP and rSO2 (nTOx). The blood pressure range where autoregulation is optimal was also determined for invasive (iABPOPT) and non-invasive blood pressure measurements (nABPOPT).

Results

102 simultaneous bilateral measurements of iTOx and nTOx were performed in 19 patients (median 2 per patient, range 1–9) with different acute pathologies (sepsis, cardiac arrest, head injury, stroke). Average iTOx was 0.01 ± 0.13 and nTOx was 0.01 ± 0.11. The correlation between iTOx and nTOx was r = 0.87, p < 0.001, 95 % agreement ± 0.12, bias = 0.005. The interhemispheric asymmetry of autoregulation was similarly assessed with iTOx and nTOx (r = 0.81, p < 0.001). Correlation between iABPOPT and nABPOPT was r = 0.47, p = 0.003, 95 % agreement ± 32.1 mmHg, bias = 5.8 mmHg. Coherence in the low frequency spectrum between iABP and nABP was 0.86 ± 0.08 and gain was 1.32 ± 0.77.

Conclusions

The results suggest that dynamic cerebrovascular autoregulation can be continuously assessed entirely non-invasively using nTOx. This allows for autoregulation assessment using spontaneous blood pressure fluctuations in conditions where iABP is not routinely monitored. The nABPOPT might deviate from iABPOPT, likely because of discordance between absolute nABP and iABP readings.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号