首页 | 本学科首页   官方微博 | 高级检索  
检索        


Mutagenicity of an aged gasworks soil during bioslurry treatment
Authors:Christine L Lemieux  Krista D Lynes  Paul A White  Staffan Lundstedt  Lars berg  Iain B Lambert
Institution:1. Mechanistic Studies Division, Chemicals Management Directorate, Health Canada, Ottawa, Ontario, Canada;2. Department of Biology, Carleton University, Ottawa, Ontario, Canada;3. Department of Chemistry, Ume? University, Ume?, Sweden
Abstract:This study investigated changes in the mutagenic activity of organic fractions from soil contaminated with polycyclic aromatic hydrocarbons (PAHs) during pilot‐scale bioslurry remediation. Slurry samples were previously analyzed for changes in PAH and polycyclic aromatic compound content, and this study examined the correspondence between the chemical and toxicological metrics. Nonpolar neutral and semipolar aromatic fractions of samples obtained on days 0, 3, 7, 24, and 29 of treatment were assayed for mutagenicity using the Salmonella mutation assay. Most samples elicited a significant positive response on Salmonella strains TA98, YG1041, and YG1042 with and without S9 metabolic activation; however, TA100 failed to detect mutagenicity in any sample. Changes in the mutagenic activity of the fractions across treatment time and metabolic activation conditions suggests a pattern of formation and transformation of mutagenic compounds that may include a wide range of PAH derivatives such as aromatic amines, oxygenated PAHs, and S‐heterocyclic compounds. The prior chemical analyses documented the formation of oxygenated PAHs during the treatment (e.g., 4‐oxapyrene‐5‐one), and the mutagenicity analyses showed high corresponding activity in the semipolar fraction with and without metabolic activation. However, it could not be verified that these specific compounds were the underlying cause of the observed changes in mutagenic activity. The results highlight the need for concurrent chemical and toxicological profiling of contaminated sites undergoing remediation to ensure elimination of priority contaminants as well as a reduction in toxicological hazard. Moreover, the results imply that remediation efficacy and utility be evaluated using both chemical and toxicological metrics. Environ. Mol. Mutagen. 2009. © 2009 Wiley‐Liss, Inc.
Keywords:bioremediation  polycyclic aromatic hydrocarbons  contaminated soil  mutagenicity
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号