首页 | 本学科首页   官方微博 | 高级检索  
     


Perforant path stimulation in rats produces seizures, loss of hippocampal neurons, and a deficit in spatial mapping which are reduced by prior MK-801
Authors:Kelsey J E  Sanderson K L  Frye C A
Affiliation:Department of Psychology, Bates College, Lewiston, ME 04240, USA. jkelsey@bates.edu
Abstract:Severe temporal lobe epilepsy in humans is often associated with loss of neurons in the hippocampus and memory deficits. In Experiment 1, 60 min of continuous electrical stimulation of the perforant path sufficient to produce seizures resembling status epilepticus and loss of hilar and pyramidal cells in the hippocampus, produced a deficit in spatial mapping in the Morris water tank. In particular, the previously stimulated rats took longer and swam farther to find a hidden, but not a visually cued, platform, and, in contrast to the unstimulated control rats, were not disrupted by movement of the platform to a new location. In Experiment 2, a single injection of the non-competitive NMDA receptor antagonist, MK-801 (1.0 mg/kg), just prior to the perforant path stimulation reduced the seizures, hippocampal neuronal loss, and deficit in spatial mapping. These data suggest that temporal lobe seizures can induce deficits in spatial memory by selectively destroying neurons within the hippocampus, and that the mechanism by which this occurs involves the activation of NMDA receptors, and, perhaps, consequent excitotoxicity.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号