首页 | 本学科首页   官方微博 | 高级检索  
     


Lps(d)/Ran of endotoxin-resistant C3H/HeJ mice is defective in mediating lipopolysaccharide endotoxin responses.
Authors:P M Wong  A Kang  H Chen  Q Yuan  P Fan  B M Sultzer  Y W Kan  S W Chung
Affiliation:Department of Pathology, Fels Institute, Philadelphia, PA 19140, USA. pmcwong@compuserve.com
Abstract:C3H/HeJ inbred mice are defective in that they are highly resistant to endotoxic shock as compared with normal responder mice. Their B cells and macrophages do not respond significantly when exposed to lipopolysaccharide (LPS), whereas cells from the responder mice do. Using a functional assay, we previously isolated a cDNA, which encodes for Ran/TC4 GTPase. We now show that this gene is mutated in C3H/HeJ mice, which accounts for their resistance to endotoxin stimulation. Sequence analysis of independent mutant Lps(d)/Ran cDNAs isolated from splenic B cells of C3H/HeJ mice reveals a consistent single base substitution at position 870, where a thymidine is replaced with a cytidine. In situ hybridization maps the Lps(d)/Ran cDNA to mouse chromosome 4. By retroviral gene transfer, the wild-type Lps(n)/Ran cDNA but not the mutant Lps(d)/Ran cDNA can restore LPS responsiveness of C3H/HeJ cells. Adenoviral gene transfer in vivo with the mutant Lps(d)/Ran cDNA but not the wild-type Lps(n)/Ran cDNA rescues endotoxin-sensitive mice from septic shock. Thus Lps/Ran is an important target for LPS-mediated signal transduction, and the Lps(d)/Ran gene may be useful as a therapeutic sequence in gene therapy for endotoxemia and septic shock.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号